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Algebras and Logics Emerging Out of Rough Sets
(An Invited Review Paper)

Mihir Kumar Chakraborty and Masiur Rahaman Sardar

Abstract 

This is basically a survey work though some new results have also been incorporated. 
The contents presented are from the research done by Chakraborty and his co-workers 
for last three decades. A major part consists in presentation of set-models of abstract 
algebraic structures generated from rough sets. Three Types of logics developed during 
the course of research are categorized. Some foundational issues are raised at the end 
and open questions are mentioned.

Keywords: Quasi-Boolean algebra, Pre-rough algebra, Hilbert system, Modal logic, 
Rough sets.

1.	 Introduction
Rough set theory was invented by Pawlak in the year 1982 [26] from the angle of computer-
applications. But the theory has surpassed the boundary and entered the domains of 
mathematics, philosophy etc. In this paper we present a survey of the mathematical (algebraic 
and logical) work done by Chakraborty and his co-workers and collaborators in the theoretical 
domain.

According to the Pawlak’s first paper [26], the universe U (a non empty set) is partitioned 
into equivalence classes by an attribute-value data table. For our purpose, the starting point is 
the pair (U, R), called the approximation space where U is the universe and R is an equivalence 
relation generating a partition. Any subset P of U is then approximated by two sets and

R
RP P

called the lower and upper approximations of P and defined as follows:

[ ]{ }:R RP u U u P= ∈ ⊆
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and

[ ]{ }: 0
R

RP u U u P= ∈ ∩ ≠ /

where [u]R is the equivalence class due to R to which u belongs. In the power set 2U of U an 
equivalence relation ≈  is naturally generated by

			   if and only if and
R R

R R
P Q P Q P Q≈ = =

in which case P and Q are called roughly equal. Any element in the quotient set [ ]2 ,U P≈ ≈  
has been defined as a rough set in [26]. There are equivalent definitions too (see [2]). Algebras 
generated in 2U ≈  may be considered as the beginning of the abstract algebraic studies in 
rough sets. The relation R has been taken to be an arbitrary one in later years and instead of a 
relation covering has been imposed on U. In both the cases lower and upper approximations 
are defined and their properties are studied. 

Side by side the algebras corresponding logical systems have been designed. This is 
done in three different ways which will be clarified later. However, it is necessary to be 
introduced to the basic notions of logical systems.

A logical system is the pair ( , ) where  is a set of well-formed formulas (wffs) over 
an alphabet  of symbols and  a binary relation from 2 , the power set of  to . In case of 
standard proposition logic the set  = {p1, p2, p3 ..., , , Þ, ¬,), (} and  is the set of finite 
strings on  given by: 

ip a a b a b a¬ ∧ ∨ Þ β.

Usually ¬ and one of the binary connectives ,  and Þ are taken as basic and the 
other two are defined (see [24]). A subset of  is taken as axiom set and Modus Ponens 
(MP) is the only rule of inference given by: ‘to derive β from α and α Þ β’. With the help of 
axioms and MP the relation  (consequence relation) is defined (see [24]). Semantics is given 
by a valuation v which is a special mapping from  to B (an arbitrary Boolean Algebra). It 
is proved that Γ  α holds if and only if v(Γ) = {1} implies v(α) = 1 where 1 is the greatest 
element of B.

Classical proposition logic is extended in Modal logic by first extending the alphabet 
with one unary operator L (and defining another operator M by ¬L¬) and enhancing the set 
of axioms by modal axioms. Depending on the axioms the hierarchy of modal systems is 
constituted (see Section 3). Besides MP, another rule Necessitation (N) is taken and the 
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consequence relation S for modal system S is defined (see [18]). Standard semantics of 
modal system is given in terms of Kripke frame (see [18]). For this paper a little detail of 
Kripke frame will be presented in Section 3. The aim here is to show that modal systems can 
be given rough set semantics and in the other direction some new modal systems are created 
from the existing rough set (covering based) models. 

Section-wise details of this paper are as follows: Section 2 contains algebraic and logical 
developments. In Section 3, modal logic systems and rough sets are presented. Section 4 
deals with membership function based MF-rough sets. Rough set models of various algebras 
are presented in Section 5. Section 6 contains some concluding remarks.

2.	 Algebraic and Logical developments
In this section, we review some abstract algebraic structures which were developed in the 
context of rough set theory. The Hilbert type logic systems corresponding to some of the 
algebras will also be presented.

In [1], the authors proposed two algebraic structures viz. pre-rough algebra and rough 
algebra in the framework of rough set theory specially based on the notions of rough inclusion 
and rough equality. It has been described in the same paper as follows. Let ,U R  be an 

approximation space. Two subsets P and Q of U are said to be roughly equal if R R
P Q=  and 

.
R R

P Q=  An equivalence relation ≈  is defined in 2U, the power set of U, as P ≈  Q if and 

only if P and Q are roughly equal. Each equivalence class [ ] of 2UP ≈≈  is called a rough 

set (see introduction). Using these rough sets and suitable operations , , ¬ and I, 
2 ,U ≈  , , ¬, I, [ ]0 ,/ ≈  [ ]U ≈  is a pre-rough algebra, a little bit more, a rough algebra. 

The operations , , ¬  and I are defined as

[ ]P ≈   [ ]Q ≈  = [P  Q] ≈ ,

[ ]P ≈   [ ]Q ≈  = [P  Q] ≈ ,

[ ] [ ] ,P P¬ = ¬≈ ≈

[ ] [ ] ,I P IP=≈ ≈ 	

where

P  Q = ( ) ( ) ,
cR R

P Q P Q P Q 
∩ ∪ ∩ ∩ ∩ 

 
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P  Q = ( ) ( ) ,
c

R R
P Q P Q P Q ∪ ∩ ∪ ∪ ∪ 

 

¬P = Pc,

,RIP P=

Ç, È and c being the set theoretic intersection, union and complementation. The lattice 
order  in the above pre-rough algebra is given by [ ]P ≈     [ ]Q ≈  if and only if P is roughly 

included in Q, i.e., and .
R R

R R
P Q P Q⊆ ⊆  Thereafter, features were abstracted from 

2 ,U ≈  , , ¬, I, [ ]0 ,/ ≈  [ ]U ≈  to yield abstractly pre-rough algebra and rough algebra.

2.1	 Algebras

To begin with, it is necessary to define quasi-Boolean algebra (qBa). qBa is short of Boolean 
algebra in that the law of excluded middle (and hence the law of contradiction) does not hold 
in it. In fact, in place of complementation here is taken the quasi-complementation about 
which more details will be discussed in Section 5. It is interesting to note that while the 
subsets of a set (the universal set U) form a Boolean algebra, the rough sets in U form a quasi-
Boolean algebra.

Formally, it is defined by:

Definition 1. [34] A quasi-Boolean algebra (qBa) is an abstract structure 
, , , , 0, 1U ∧ ∨ ¬  where

1.	 , , , 0, 1U ∨ ∧  is a bounded distributive lattice

2.	 ¬ ¬ x = x, for all x in U
3.	 ¬(x  y) = ¬x  ¬y, for all x, y in U.

We now proceed to the main definition related with Pawlakian rough sets.

Definition 2. [1] A pre-rough algebra is an abstract structure , , , , , 0, 1U I∧ ∨ ¬ , 
where I is a unary operator on U with the following conditions:

1.	 , , , , 0, 1U ∧ ∨ ¬  is a qBa.

2.	 I1 = 1.
3.	 I(x  y) = Ix  Iy, for all x, y Î U.
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4.	 Ix £ x, for all x Î U (£ is the lattice order).
5.	 IIx = Ix, for all x Î U.
6.	 CIx = Ix, for all x Î U, where Cx = ¬I¬x.
7.	 ¬Ix  Ix = 1, for all x Î U.
8.	 I(x  y) = Ix  Iy, for all x, y Î U.
9.	 Cx < Cy and Ix £ Iy imply x £ y, for all x, y Î U.

Definition 3. [1] Let , , , , , 0, 1U I∧ ∨ ¬  be pre-rough algebra. Then, it is said to be 
a rough algebra if the sub algebra I(U) = {Iu : u Î U} is complete and completely distributive, 
i.e., for any subset X of I(U), lub of X and glb of X exist and for any subset {xij : i Î I, ,j Î J} 
of I(U),

			   ( ), ,
:

i j i f i
i I j J f I J i I

x x
∈ ∈ → ∈

=∧∨ ∨ ∧  holds, I, J being index sets.

In the above two algebras, a binary operation Þ, called rough implication needs to be 
defined in terms of other operations satisfying the property (PÞ):

			   x £ y if and only if x Þ y = 1, for all x, y Î U.

The rough implication that was defined in [1] is

			   x Þ y = (¬Ix  Iy)  (¬Cx  Cy), for all x, y Î U.

It has a natural interpretation in the field of classical rough set theory. In fact, it 
corresponds to the notion of rough inclusion [28] viz. a subset P is roughly included in a 

subset Q with respect to the approximation space (U, R), P, Q Í U if R R
P Q⊆  and .

R R
P Q⊆

It has another importance for developing logic systems corresponding to pre-rough algebra 
and rough algebra. In a Hilbert type logic system corresponding to an abstract algebra, it is 
crucial to have an implication (Þ) which is interpreted in the corresponding algebra as the 
operation Þ having the property (PÞ). We shall discuss about the logic systems corresponding 
to pre-rough algebra and rough algebra in the next subsection.

In [1], a predecessor of pre-rough algebra, and of course rough algebra, has been 
highlighted and called topological quasi-Boolean algebra (tqBa). It is the algebra satisfying 
the conditions from 1 to 6 of pre-rough algebra only (Definition 2). The nomenclature of 
this algebra comes from topological Boolean algebra that was already known since 1944 
[34]. A topological Boolean algebra is a Boolean algebra endowed with an interior operator 



236	 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

Journal of Combinatorics, Information & System Sciences

I satisfying the conditions from 2 to 5 of pre-rough algebra. Thus, a tqBa which is based on 
quasi-Boolean algebra (not necessarily a Boolean algebra) possesses one more axiom, viz. 
CIx = Ix. This axiom is obviously equivalent to Ix £ CIx and CIx £ Ix in which the second 
one is nothing but the algebraic counter part of modal axiom S5 [18]. Here it may be stated 
that the properties 4 and 5 of pre-rough algebra are algebraic versions of modal axioms T 
and S4 respectively. Also the counterpart of modal axiom B is CIx £ x. In view of this, the 
author(s) of [45, 36] split the original notion of topological quasi-Boolean algebra, to make 
it more appropriate in nomenclature, into two notions viz. topological quasi-Boolean algebra 
and topological quasi-Boolean algebra 5 (tqBa5). Henceforth, in this paper, a tqBa means the 
abstract algebra satisfying the conditions from 1 to 5 of pre-rough algebra whereas tqBa + 6 
is the abstract algebra tqBa5. In [36], it has been proved that in a tqBa5, axiom 5 of pre-rough 
algebra: IIx = Ix is redundant. Also the algebraic counter part of modal axiom B, i.e., CIx £ x 
holds in a tqBa5. A natural question now arises—what would be the logics corresponding to 
these structures tqBa and tqBa5? Unfortunately, no affirmative response can be made on this 
issue with respect to the Hilbert type logic system corresponding to these algebras. This has 
been presented in [5]. In this project report, the author has shown that no binary operation Þ 
can in general be defined in terms of other operations obeying the property (PÞ) in these two 
algebras. The example that was constructed for the purpose is as follows.

Example 1. Let U = {0, x, y, 1}. Hasse diagram of the lattice is given in Figure 1. ¬ is 
defined as ¬x = x, ¬y = y, ¬1 = 0, ¬0 = 1 and I is defined as the identity operator, i.e., Iz = z, 
for all z. Then , , , , , 0, 1U I∧ ∨ ¬  is a tqBa as well as tqBa5. Now x Þ x should be an 
element involving x, ¬, ,  and I only. In this example ¬x = x, x  x = x, x  x = x, Ix = x 
and hence x Þ x = x(¹ 1) but x £ x.

x y

1

0

Fig. 1:  Hasse diagram (tqBa, tqBa5)
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In view of this example, it is clear that the three properties 7, 8 and 9 of pre-rough 
algebra which do not hold in tqBa5 have a crucial role for developing the Hilbert type logic 
system of pre-rough algebra. These properties are called intermediate property 1 (IP1), 
intermediate property 2 (IP2) and intermediate property 3 (IP3) respectively. In [45,36], an 
initiative was taken to check whether these axioms are independent or not in the context of 
pre-rough algebra. In fact, the authors of [36] proved that tqBa5 + IP1 + IP3 implies IP2. 
Besides this, they have shown that some axioms of pre-rough algebra like I1 = 1, IIx = Ix, CIx 
= Ix are also deducible from other axioms. As a result, a simplified form of pre-rough algebra 
has been defined in [36]. Moreover, using these three intermediate properties three algebras 
were defined in [45,37]. They are tqBa5 + IP1 called intermediate algebra of type 1 (IA1), 
tqBa5 + IP2 called intermediate algebra of type 2 (IA2) and tqBa5 + IP3 called inter-mediate 
algebra of type 3 (IA3). As Example 1 becomes an instance of IA2 as well as IA3, no Hilbert 
type logic system corresponding to IA2 and IA3 can be developed [37]. Whether such logic 
system corresponding to IA1 can be constructed or not is unsolved till now. 

We have already mentioned that no Þ satisfying the property (PÞ) is available in tqBa5 
but such an operation (rough implication) is present in pre-rough algebra. So, a natural 
question: can we construct some algebraic structures in the vicinity of pre-rough algebra 
where rough implication would be available? On this issue, a sufficient amount of work has 
been done in [36]. In this paper, the authors have developed a cluster of algebras weaker than 
pre-rough algebra where rough implication exists. An important result that helps to construct 
such algebras is the following.

Proposition 1. [36,35] In an algebraic structure based on qBa (with two unary operators 
I and C, C = ¬I¬), the following are the necessary and sufficient conditions for the rough 
implication Þ to satisfy the property (PÞ).

1.	 ¬Ix  Ix = 1
2.	 x £ y implies Ix £ Iy
3.	 Cx £ Cy and Ix £ Iy imply x £ y.

Thus, from the above Proposition 1, IP1 and IP3 are essential for obtaining rough 
implication. Since, I(x  y) = Ix  Iy gives ‘x £ y implies Ix £ Iy’, the authors of [36] 
presented two basic structures using the properties ‘I(x  y) = Ix  Iy’ and ‘x £ y implies Ix 
£ Iy’. The steps that they took in this regard are as follows.

Definition 4. An abstract algebra , , , , , 0, 1U I∧ ∨ ¬  is said to be a System0 algebra 
if and only if
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	 1.	 , , , , 0, 1U ∧ ∨ ¬  is a qBa.

	 2.	 I1 = 1.
	 3.	 x £ y implies Ix £ Iy.

Definition 5. An abstract algebra , , , , , 0, 1U I∧ ∨ ¬  is said to be a SystemI algebra 
if and only if , , , , , 0, 1U I∧ ∨ ¬  is a System0 algebra along with IP1 and IP3.

Definition 6. An abstract algebra , , , , , 0, 1U I∧ ∨ ¬  is said to be a SystemII 
algebra if and only if

	 1.	 , , , , 0, 1U ∧ ∨ ¬  is a qBa.

	 2.	 I1 = 1.
	 3.	 I(x  y) = Ix  Iy.
	 4.	 IP1 and IP3 hold.

It is clear that any SystemII algebra is a SystemI algebra. But the converse, i.e., whether 
a SystemI algebra is a SystemII algebra or not is still open [36]. Afterwards, it has been shown 
in the same paper that modal axioms T: Ix £ x, B: CIx £ x, S4 : Ix £ IIx, S5: CIx £ Ix do not 
hold in general in a SystemII algebra and hence in a SystemI algebra too. The example that 
was considered to show this is as follows.

Example 2. A lattice U = {0, x, y, u, v, 1} whose Hasse diagram is shown in Figure 2 
and ¬, I are defined in the tables given below.

1

u v

x y

0
Fig. 2: Hasse diagram (SystemII algebra)
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			   0 x y u v 1

 		                                 ¬	 1 v u y x 0

   		                                  I	 0 v x 1 x 1

 		                                 C 	 0 v 0 v x 1 

U along with the above operations is a SystemII algebra. In this example, Iu ≤  u,CIu 
≤  u, Iy ≤  IIy, CIy ≤  Iy.

The authors further noticed that if modal axiom T is added with SystemI or SystemII 
algebra then it becomes a pre-rough algebra straightway. So, they added modal axioms B, 
S4, S5 separately to a SystemI and SystemII algebras. According to them, SystemIB algebra, 
SystemI4 algebra, SystemI5 algebra are respectively SystemI algebra + modal axiom B, 
SystemI algebra + S4 and SystemI algebra + S5. Similar is the case for the other structures 
SystemIIB algebra, SystemII4 algebra, SystemII5 algebra. Besides this, to obtain stronger 
structures they replaced £ by = in the modal axioms S4, S5 and added them to a SystemI and 
SystemII algebra as before. As a result, SystemI4E algebra (SystemI algebra + IIx = Ix) and 
similar other algebras SystemI5E, SystemII4E, SystemII5E are available in [36]. In the same 
paper relationships among the algebras were studied and presented. For a clear understanding 
of the various algebraic structures discussed so far, we refer to Figure 3 on page 240. Of 
these, no implication Þ can in general be defined in terms of other operations satisfying the 
property (PÞ) in the bold faced algebras except for 1 where availability of such implication 
is unsolved till now. For the remaining algebras, the rough implication works smoothly.

In our paper [43], an initiative has been taken to obtain proper set theoretic rough set 
models for some of the above algebras prior to pre-rough algebra. The phrase ‘proper set 
theoretic rough set model’ means that it should be a set model and should not reduce to a pre-
rough algebra. In fact, for any approximation space ,U R  2 ,U ≈  , 

, ¬, I, [ ] [ ]0 , U/ ≈ ≈  becomes a pre-rough algebra and hence it is not a proper set theoretic 
rough set model of any algebra weaker than pre-rough algebra. For proper set theoretic rough 
set models, it is necessary to check which properties of I are available in the aforesaid algebras. 
For example, in tqBa modal axioms T, S4 and hence axiom D (Ix £ Cx) are available, whereas 
in tqBa5, IA1, IA2 and IA3 modal axioms T, S4, S5 and hence axioms D, B hold. But (in view 
of standard modal systems), no information is available regarding the algebraic counterpart 
of the modal axiom K. We have further noticed that there are two types of algebras, one in 
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Fig. 3: Algebras in the vicinity of pre-rough algebra, P →→  Q stands for the 
algebra Q has one more operator and some axioms for the new operator than the 

algebra P. P ® Q stands for both the algebras P and Q have the same operations and 
the algebra Q is always the algebra P. P ... Q stands for the algebras 

P and Q are independent.
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which no implication can be defined in terms of other operations satisfying the property (PÞ) 
(e.g., tqBa, tqBa5, IA2, IA3 etc.), other in which an implication (the rough implication) is 
available obeying the property (PÞ) (e.g., SystemI, SystemII, SystemI4, SystemI5 etc.). As 
modal axiom K in the form I(x Þ y) Þ (Ix Þ Iy) = 1 is irrelevant for the algebras tqBa, tqBa5, 
IA2, IA3 etc. (as no Þ is available), we consider the other form of modal axiom K: I(¬x  y) 
£ ¬Ix  Iy. The above form is similar to I(AC È B) Í (IA)C È IB, the algebraic counterpart 
of the modal axiom K in Boolean base. Thereafter, we have checked whether this form of 
modal axiom K holds or not in the above algebras. We have shown that this axiom holds in 
pre-rough algebra, IA1, IA2 but does not hold in tqBa, tqBa5, IA3, System0, SystemI, 
SystemII etc. Later, a number of new abstract algebras based on qBa have been introduced in 
order to fulfil the following purposes:

– 	 In these algebras, properties of I are enhanced in hierarchical order starting form 
modal axiom D (axiom K: I(¬x  y) £ ¬Ix  Iy is not considered as it does not 
hold generally in our constructed rough set models) [see Section 5].

– 	 Proper set theoretic rough set models may be constructed for these algebras.

The newly created algebras are thus:

Definition 7. An abstract algebra , , , , , 0, 1U I∧ ∨ ¬ , where I is a unary operator on 
U, is said to be a semi topological quasi-Boolean algebra (stqBa) if and only if

	 1.	 , , , , 0, 1U ∧ ∨ ¬  is a qBa.

	 2.	 I1 = 1.
	 3.	 I(x  y) = Ix  Iy, for all x, y Î U.

In this algebra modal axiom K, D and T do not hold [43].

Definition 8. Let , , , , , 0, 1U I∧ ∨ ¬  be a stqBa. Then it is said to be a semi 
topological quasi-Boolean algebra with modal axiom D (stqBaD) if and only if Ix < Cx, for 
all x Î U (Cx = ¬I ¬x).

The modal axiom T generally does not hold in a stqBaD [43].

Definition 9. Let , , , , , 0, 1U I∧ ∨ ¬  be a stqBa. Then it is said to be a semi 
topological quasi-Boolean algebra with modal axiom T (stqBaT) if and only if Ix £ x, for all 
x Î U.
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It is obvious that a stqBaT is a stqBaD but the converse is not true. Further it has been 
shown that the modal axioms B(CIx £ x) and S4(Ix £ IIx) generally do not hold in a stqBaT 
[43].

Definition 10. Let , , , , , 0, 1U I∧ ∨ ¬  be a stqBaT. Then it is said to be a semi 
topological quasi-Boolean algebra with modal axiom B (stqBaB) if and only if CIx £ x, for 
all x Î U (Cx = ¬I ¬x).

The modal axioms S4 and S5(CIx £ Ix) generally do not hold in a stqBaB [43].

A tqBa is nothing but a stqBaT + modal axiom S4. In a tqBa the modal axioms B and S5 
do not hold [43]. The algebras stqBaB and tqBa are independent to each other.

A tqBa5 is a stqBaT + modal axiom S5.

Figure 4 shows a relationship between the old and new algebras.

Logics and proper set theoretic rough set models of newly created algebras have been 
discussed in Subsection 2.2 and Section 5 respectively.

Another direction of work has been done in [37]. It has been mentioned earlier that it 
is not possible to define Þ in terms of other operations satisfying the property (PÞ) in a qBa 
(even in a tqBa5). But, to develop the Hilbert type axiomatic system corresponding to these 
algebras such an implication is needed. In this paper [37], such an implication operation has 
been imposed in qBa and some other stronger structures where this operation is not available 
in general. This is, in a way, similar to Rasiowa’s approach in [34] where the algebraic 
structure called relatively pseudo-complemented lattice (now called residuated lattice) had 
been introduced by putting together positive implication algebra and a lattice structure. In 
the present case, implicative algebra and quasi-Boolean algebra have been amalgamated. 
Following Rasiowa [34] these structures have been named implicative quasi-Boolean 
algebra(IqBa) and implicative quasi-Boolean algebra with operator(IqBaO). The operators 
they [37] have taken are topological operators corresponding to the modal axioms T, S4 and S5 
[18]. The corresponding algebras have been named as implicative quasi-Boolean algebra with 
modal axiom T(IqBaT), implicative quasi-Boolean algebra with modal axiom S4(IqBa4) 
and implicative quasi-Boolean algebra with modal axiom S5(IqBa5). The definitions and 
important features of these algebras are as follows (see [37] for details).

Definition 11. An abstract algebra , , , , , 0, 1U ∧ ∨ ⇒ ¬  is called an implicative 
quasi-Boolean algebra(IqBa) if and only if
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Fig. 4: Relationship diagram of the newly created algebras and old algebras. Bold 
faced algebras are newly introduced in our paper [43] whereas others are available in 
different literature. P →→  Q stands for the algebra Q contains one new operator and 

some axioms for the new operator than the algebra P. P ® Q stands for both the 
algebras P and Q have the same operations but Q contains some more axioms than P. 

P ... Q stands for the algebras P and Q are independent to each other.
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	 1.	 , , , , 0, 1U ∧ ∨ ¬  is a qBa.

	 2.	 x Þ y = 1 if and only if x £ y, for all x, y Î U.            (PÞ)

Definition 12. An algebra , , , , , , 0, 1 ,U I∧ ∨ ⇒ ¬  where I is a unary operator, will 
be called an implicative quasi-Boolean algebra with operator (IqBaO) if and only if

	 1.	 , , , , , 0, 1U ∧ ∨ ⇒ ¬  is a IqBa.

	 2.	 I1 = 1.
	 3.	 I(x  y) = Ix  Iy, for all x, y Î U.

Definition 13. Let , , , , , , 0, 1U I∧ ∨ ⇒ ¬  be a IqBaO. Then it will be an

1.	 implicative quasi-Boolean algebra with modal axiom T (IqBaT) if and only if 
	 Ix £ x holds, for all x Î U (modal axiom T),
2.	 implicative quasi-Boolean algebra with modal axiom S4 (IqBa4) if and only if it is 

a IqBaT and Ix £ IIx, for all x Î U (modal axiom S4),
3.	 implicative quasi-Boolean algebra with modal axiom S5 (IqBa5) if and only if it is 

a IqBa4 and CIx £ Ix, for all x Î U, where C = ¬I¬ (modal axiom S5).

By several examples it has been shown [37] that modal axiom K in the form I(x Þ y) Þ 
(Ix Þ Iy) does not hold generally in these algebras. As earlier, it has also been mentioned [37] 
that the axiom Ix £ IIx is redundant in a IqBa5 and the modal axiom B(CIx £ x) also follows 
in this algebra. The authors of [37] also observed the followings.

– 	 A IqBa5 is a tqBa5 algebra along with an implication having the property (PÞ): 
	 x Þ y = 1 if and only if x £ y for all x, y.
– 	 If the above implication is defined by x ÞB y = ¬x  y in a qBa and the property 

(PÞ) is assumed for ÞB then the qBa becomes a Boolean algebra. Hence, a IqBa5 
then turns into a topological Boolean algebra [34] (also known as an interior 
algebra [7] with S5 axiom).

– 	 If the above implication is defined by x ÞR y = (¬Ix  Iy)  (¬Cx  Cy) in 
a IqBa5 and the property (PÞ) is assumed for  ÞR then the IqBa5 becomes a 
pre-rough algebra. Thus, a tqBa5 with ÞR satisfying (PÞ) turns into a pre-rough 
algebra.

– 	 If the above implication is defined by x ÞL y = (C¬x  y)  (¬x  Cy) [8] in a 
IqBa5 and the property (PÞ) is assumed for ÞL then the IqBa5 becomes a 3-valued 
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Lukasiewicz (Moisil) algebra [8]. Thus, a tqBa5 with ÞL satisfying (PÞ) turns into 
a 3-valued Lukasiewicz (Moisil) algebra.

Subsequently, we have expanded the area considering the three intermediate properties 
IP1, IP2 and IP3. It is to be noted that the properties are separately used to define the three 
intermediate algebras IA1, IA2, IA3 and no implication can in general be defined in terms of 
other operations satisfying the property (PÞ) in IA2, IA3 and in case of IA1, it is unsolved. We 
added the three intermediate properties IP1, IP2 and IP3 separately to IqBaO, IqBaT, IqBa4 
and IqBa5 and investigated the consequences [44]. As a result, twelve additional algebraic 
structures had been obtained as shown in Figure 5. Of these, the chain of algebras qBa, IqBa, 
IqBaO, IqBaT, IqBa4 and IqBa5 (bold face) are included in [37]. In fact, we have actually 
added the modal axiom T to IqBa1 to obtain IqBa1,T which is the same as adding IP1 to 
IqBaT. Similar is the case for all other structures.

We now present a brief discussion about the algebras just mentioned above (see [44] 
for details).

Definition 14. Let , , , , , , 0, 1 ,U I∧ ∨ ⇒ ¬   be a IqBaO.  Then it is said to be an

1.	 implicative quasi-Boolean algebra with IP1 (IqBa1) if and only if ¬Ix  Ix = 1 
holds, for all x Î U,

2.	 implicative quasi-Boolean algebra with IP2 (IqBa2) if and only if I(x  y) = 
	 Ix  Iy holds, for all x, y Î U,
3.	 implicative quasi-Boolean algebra with IP3 (IqBa3) if and only if Cx £ Cy and 
	 Ix £ Iy imply x £ y, for all x, y Î U.

By several examples, independence of the algebras IqBa1, IqBaT, IqBa2 and IqBa3 
has been established.

Definition 15. Let , , , , , , 0, 1 ,U I∧ ∨ ⇒ ¬    be a IqBaO.  Then it is said to be an

1. 	 implicative quasi-Boolean algebra with IP1 and modal axiom T (IqBa1,T) if and 
only it is a IqBa1 and Ix £ x, for all x E U,

2.	 implicative quasi-Boolean algebra with IP2 and modal axiom T (IqBa2,T) if and 
only if it is a IqBa2 and Ix ≤ x, for all x Î U,

3.	 implicative quasi-Boolean algebra with IP3 and modal axiom T (IqBa3,T) if and 
only if it is a IqBa3 and Ix ≤ x, for all x Î U.
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Fig. 5: Algebras based on IqBaO 
P →→  Q stands for the algebra Q has one more operation than the algebra P. P ® Q 
stands for both the algebras P and Q have the same operations but Q has one more 

axiom than P.
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As before, independence of the algebras IqBa1,T, IqBa4, IqBa2,T and IqBa3,T has also 
been shown.

Definition 16. Let , , , , , , 0, 1U I∧ ∨ ⇒ ¬  be a IqBaO.  Then it is said to be an

1.	 implicative quasi-Boolean algebra with IP1 and modal axiom S4 (IqBa1,4) if and 
only it is a IqBa1,T and Ix £ IIx, for all x Î U,

2.	 implicative quasi-Boolean algebra with IP2 and modal axiom S4 (IqBa2,4) if and 
only if it is a IqBa2,T and Ix £ IIx, for all x Î U,

3.	 implicative quasi-Boolean algebra with IP3 and modal axiom S4 (IqBa3,4) if and 
only if it is a IqBa3,T and Ix £ IIx, for all x Î U.

Independence issue of the algebras IqBa1,4, IqBa2,4, IqBa3,4 along with IqBa5 has 
been established in the same paper [44] with the help of some examples.

Definition 17. Let , , , , , , 0, 1U I∧ ∨ ⇒ ¬  be a IqBaO.  Then it is said to be an

1.	 implicative quasi-Boolean algebra with IP1 and modal axiom S5 (IqBa1,5) if and 
only if it is a IqBa1,4 and CIx £ Ix, for all x Î U,

2.	 implicative quasi-Boolean algebra with IP2 and modal axiom S5 (IqBa2,5) if and 
only if it is a IqBa2,4 and CIx £ Ix, for all x Î U,

3.	 implicative quasi-Boolean algebra with IP3 and modal axiom S5 (IqBa3,5) if and 
only if it is a IqBa3,4 and CIx £ Ix, for all x Î U.

That IqBa1,5, IqBa2,5 and IqBa3,5 are independent algebras is shown in [44].

It is to be noted that if implication were imposed (satisfying the property (PÞ) directly 
in IA1, IA2 and IA3 then IA1 + (PÞ), IA2 + (PÞ) and IA3 + (PÞ) would be the same with the 
algebras IqBa1,5, IqBa2,5 and IqBa3,5 respectively.

2.2	 Logics

In this section logics corresponding to the algebras discussed in subsection 2.1 will be 
considered. We present mainly the Hilbert type logic system. The Sequent Calculi for most of 
the algebras are available in various literature [46, 45, 36, 37, 43].

The Hilbert System for pre-rough algebra: In [1], the formal system of pre-rough 
algebra has already been developed. However, the number of axioms of pre-rough algebra 
has been reduced in [37]. As a consequence, the number of axioms of pre-rough logic has 
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also been reduced in the same paper. The logic PRA of the modified pre-rough algebra is as 
follows [37]. The alphabet of the language of PRA consists of 

— 	 propositional variables p, q, r, ... 
—	 unary logical connectives ¬ and I. 
—	 binary logical connective . 
—	 parentheses (,).

Well formed formulas (wffs) are formed in the usual way and α, β,γ, δ etc. are used to 
denote them.

 (binary), Þ (binary) and C (unary) are definable logical connectives:

α  β º ¬(¬α  β), α Þ β º (¬Iα  I β)  (Cα  C β), Cα º ¬I¬α, for any wffs α, β 
of PRA. 

Axioms for PRA:

	 1.	 a Þ ¬  ¬ a
	 2.	 ¬ ¬ α Þ a	
	 3.	 α  β Þ β
	 4.	 α  β Þ β  α
	 5.	 α  (β  γ) Þ (α  β)  (α  γ)
	 6.	 (α  β)  (α  γ) Þ α  (β  γ)
	 7.	 Iα Þ α
	 8.	 Iα  I  β Þ I (α  β)

Rules of inference:

1.	
,

Modus ponens (MP)
a a ⇒ b

b

2.  	  
,

Hypothetical syllogism (HS)
a ⇒ b b ⇒ g

a ⇒ g

3.	
a

b ⇒ a
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4.	
a ⇒ b

¬b ⇒ ¬a

5.	
,a ⇒ b a ⇒ g

a ⇒ b ∧ g

6.	 ( ) ( )
, , ,a ⇒ b b ⇒ a g ⇒ d d ⇒ g
a ⇒ g ⇒ b ⇒ d

7.	
I I
a ⇒ b
a ⇒ b

8.	
I
a
a

 Necessitation (N)

9.	
,I I C Ca ⇒ b a ⇒ b

a ⇒ b

 α stands for α is a theorem in the logic system PRA as usual sense.

Definition 18. A model of PRA is (U, v) where U = , , , , , , 0, 1U I∧ ∨ ⇒ ¬  is a pre-
rough algebra and v is a valuation function which assigns a value v(p) Î U for each atomic 
wff p of PRA.

Remark 1. Any valuation function v can be extended to arbitrary formulae as follows

	 (α  β) = v(α)  v(β), v(¬α) = ¬v(α),v(α Þ β) = v(α) Þ v(β),v(Iα) = Iv(α).

As  and C are definable connectives, it can be shown that v(α  β) = v(α)  v(β),v(Cα) 
= Cv(α) where Cx = ¬I ¬x.

Definition 19. A wff α is said to be true in a model U, v  of PRA if and only if 
v(α) = 1.

Definition 20. A wff α is said to be valid in the class of all models of PRA if and only if 
α is true in every model U, v  of PRA.

Remark 2. A wff α Þ β is valid if and only if v(α) £ v(β), for all models U, v  of PRA.
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Theorem 1.   (Soundness)[1]: If   a in the logic system PRA then α is valid in the class 
of all models of PRA.

Theorem 2.   (Completeness)[1 ]: If α is valid in the class of all models of PRA then  
α in the logic system PRA.

The Hilbert System for rough algebra: Rough logic RA for rough algebra has been 
presented in [1].

The alphabet of the language of RA is the alphabet of the language of PRA + logical 
symbol ∨ , standing for infinite disjunction. One definable logical symbol ∧  (infinite 

conjuction) stands for ¬ ∨ ¬.

Formulae formation rule with respect to ∨ : For any index set , j J jJ ∈ a∨  is a wff in 

RA if and only if αj is of the form I βj, for some βj, j Î J. 

Axioms: All axioms of PRA along with

1. 	 Iαj Þ j J∈∨  Iαj, for each αj, j Î J, 

2.	 j J∈∨  αj Þ I j J∈∨  αj,

3. 	 I jj J∈ a∨  Þ j J∈∨  aj,

4.	 ( ), , ,Jj J k K f K j Jj k j f jI I∈ ∈ ∈ ∈a ⇒ a∨ ∧ ∧ ∨
5.  	 ( ) ,, ,Jf K j J j J k K j kj f jI I∈ ∈ ∈ ∈a ⇒ a∧ ∨ ∨ ∧

where J, K are index sets and KJ is the set of maps of J into K. 

Rules of inference: All rules of inference of PRA + one new rule: ,i

jj J

I I
I I∈

a ⇒ b
a ⇒ b∨

 

for each j Î J.

Theorem 3. [1] RA is sound and complete relative to the class of all models of RA.
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Remark 3.

1.	 No Hilbert type logic system can be constructed for the algebras tqBa, tqBa5, IA1, 
IA2, IA3. This is due to unavailability of Þ in these algebras.

2.	 As Example 1 becomes an instance of the algebras stqBa, stqBaT, stqBaD and 
stqBaB, the Hilbert type system for the said algebras can not be developed.

Due to availability of rough arrow in SystemI algebra, SystemIB algebra, SystemI4 
algebra, SystemI4E algebra, SystemI5 algebra, SystemI5E algebra SystemII algebra and 
SystemII4 algebra, the Hilbert type logic systems corresponding to these algebras have been 
developed in [36].

Let I, IB, I4, I4E, I5, I5E, II, II4 be the logic systems for SystemI algebra, 
SystemIB algebra, SystemI4 algebra, SystemI4E algebra, SystemI5 algebra, SystemI5E 
algebra, SystemII algebra and SystemII4 algebra respectively.

The Hilbert type System I for SystemI algebra: The language of I is the same as 
that of PRA. The first six axioms and all rules of PRA are the axioms and rules of this system.

The Hilbert Systems IB, I4, I4E, I5, I5E, II, II4: The languages of the systems 
IB, I4, I4E, I5, I5E, II, II4 are the same as that of I. In all cases, all axioms and rules of 
I are there together with some extra axiom(s) viz.,

	 CIα Þ α for IB, 
	 Iα Þ IIα for I4, 
	 Iα Þ IIα and IIα Þ Iα for I4E 
	 CIα Þ Iα for I5,
	 CIα Þ Iα and Iα for I5,
	 I(α  b) Þ Iα  Ib for I1,
	 I(α  b) Þ Iα  Ib and Iα Þ IIa for I14.

	 Theorem 4. [36] All these systems I, IB, I4, I4E, I5, I5E, II, II4 are sound and 
complete relative to the class of all corresponding models.

In each of the implicative algebras, implication has been imposed there. So, the Hilbert 
systems corresponding to these algebras have been constructed and are available in [37,44].

In [37], the Hilbert Systems Lh, LO, LT, L4, L5 corresponding to the algebras IqBa, IqBaO, 
IqBaT, IqBa4 and IqBa5 have been presented.



252	 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

Journal of Combinatorics, Information & System Sciences

The Hilbert system Lh: The alphabet of the language of Lh consists of

—	 propositional variables p, q, r, ... 
—	 unary logical connective ¬. 
— 	 binary logical connectives  and Þ. 
—	 parentheses (, ).

Well formed formulas (wffs) are formed in the usual way and denoted by α, β, γ, δ etc. 

Axioms for Lh:

1.	 α Þ ¬ ¬α
2.	 ¬ ¬α Þ α
3.	 α  β Þ β
4.	 α  β Þ β  α
5.	 α  (β  γ) Þ (α  β)  (α  γ)
6.	 (α  β)  (α  γ) Þ α  (β  γ)
Rules of inference:

1.	
,a a ⇒ b

b
 Modus ponens (MP)

2.  	
,a ⇒ b b ⇒ g

a ⇒ g
 Hypothetical syllogism (HS)

3.	
a

b ⇒ a

4.	
a ⇒ b

¬b ⇒ ¬a

5.	
,a ⇒ b a ⇒ g

a ⇒ b ∧ g

6.	 ( ) ( )
, , ,

a
a ⇒ b b ⇒ a l ⇒ d d ⇒ g

⇒ g ⇒ b ⇒ d
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The Hilbert systems LO, LT, L4, L5: The alphabets of the language of LO, LT, L4, L5 are 
the same and that is: the alphabet of the language of Lh with one additional logical connective 
I. C is a definable connective where C = ¬I¬.

Iα is a wff if α is so.

Axioms for LO, LT, L4, L5: 

All axioms of Lh + Iα  I β Þ I(α  β) for LO. 

All axioms of Lh + Iα  I β Þ I(α  β) + I α Þ α for LT. 

All axioms of Lh + Iα  I β Þ I(α  β) + Iα Þ α + Iα Þ IIα for L4.

All axioms of Lh + Iα  I β Þ I(α  β) + Iα Þ α + CIα Þ Iα for L5.

Rules for LO, LT, L4, L5: In all cases, rules are the same and that is: the Rules of inference 
of Lh along with

			   ( )and Necessitation N .
I I I
a ⇒ b a
a ⇒ b a

In [44], L1, L2, L3, L1, T, L2, T, L3, T,, L1, 4, L2, 4, L3, 4, L1, 5, L2, 5, L3, 5 are the logic systems 
for the algebras IqBa1, IqBa2, IqBa3, IqBa1,T, IqBa2,T, IqBa3,T, IqBa1,4, IqBa2,4, 
IqBa3,4, IqBa1,5, IqBa2,5 and IqBa3,5 respectively.

Hilbert systems L1, L1, T, L1, 4, L1, 5: The alphabets of the language of L1, L1, T, L1, 4, L1, 5 
are the same with the alphabet of the language of LO.

Axioms for L1, L1, T, L1, 4, L1, 5: 

All axioms of LO + ¬Iα  Iα for L1. 

All axioms of L1 + Iα Þ α for L1, T. 

All axioms of L1, T + Iα Þ IIα for L1, 4. 

All axioms of L1, T + CIα Þ Iα for L1, 5.

Rules for L1, L1, T, L1, 4, L1, 5: In all cases, rules are the same with the rules of LO.

The Hilbert systems L2, L2, T, L2, 4, L2, 5: The alphabets of the language of L2, L1, T, L2, 4, 
L2, 5 are the same with the alphabet of the language of LO.



254	 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

Journal of Combinatorics, Information & System Sciences

Axioms for L2, L1, T, L2, 4, L2, 5: 

All axioms of LO + l(α  β) Þ Iα   I β for L2. 

All axioms of L2 + Iα Þ α for L2, T. 

All axioms of L2, T + Iα Þ IIα for L2, 4. 

All axioms of L2, T + CIα Þ Iα for L2, 5.

Rules for L2, L2, T, L2, 4, L2, 5: In all cases, rules are the same with the rules of LO.

Hilbert systems L3, L3, T, L3, 4, L3, 5: The alphabets of the language of L3, L3, T, L3, 4, L3, 5 
are the same with the alphabet of the language of LO.

Axioms for L3, L3, T, L3, 4, L3, 5: 

All axioms of LO are the axioms of L3. 

All axioms of L3 + Iα Þ α for L3, T. 

All axioms of L3, T + Iα Þ IIα for L3, 4. 

All axioms of L3, T + CIα Þ Iα for L3, 5.

Rules for L3, L3, T, L3, 4, L3, 5: In all cases, rules are the same with the rules of LO along 
with one new rule:	

			 
,

.
I I C Ca ⇒ b a ⇒ b

a ⇒ b

Theorem 5. [37, 44] With respect to the class of corresponding models the above 
Hilbert Systems L, LO, LT, L4, L5, L1, L1, T, L1, 4, L1, 5, L2, L2, T, L2, 4, L2, 5, L3, L3, T, L3, 4, L3, 5 are 
sound and complete.

3.	 Modal logic systems and Rough sets
The standard normal modal systems are K, D, T, S4, B, S5. These are classical propositional 
logics enhanced by modal operators L (necessity) and M (possibility). Along with the axioms 
of propositional logic, modal axioms are added to define the systems in a hierarchical manner 
as given below:
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System K: Propositional logic axioms + L(α Þ β) Þ (Lα Þ Lβ) (modal axiom K).
System D: System K + (Lα Þ Mα) (modal axiom D) where Mα = ¬L¬α.
System T: System K + (Lα Þ α) (modal axiom T). 
System S4: System T + (Lα Þ LLα) (modal axiom S4). 
System B: System T + (α Þ LMα) (modal axiom B). 
System S5: System T + (MLα Þ Lα) (modal axiom S5).

There are two rules of inference:

			   MP (Modus Ponens): 
,a a ⇒ b

b
	

and

			   N (Necessitation): 
L
a
a

for all wffs a, b.

The language or the set of all wffs shall be denoted by ML. The usual semantics for 
modal systems is the Kripke semantics for which we refer to [18]. However, for our current 
purpose we present it with little modifications as below.

Kripke semantics: A Kripke frame is a pair  = (U, ρ) where U is a non-empty set of 
worlds and ρ is a binary relation on U called the accessibility relation. A frame  = (U, ρ) is 
said to be reflexive/symmetric/transitive if and only if ρ is so.

A Kripke model is a triple . = (U, ρ, v) where (U, ρ) is a Kripke frame and v : Prop 
® 2U is a valuation function from Prop (the set of all propositional variables) to the power 
set of U.

Given a Kripke frame  = (U, ρ), the operation Lρ: 2
U ® 2U on the power set 2U is 

defined by Lρ(P) = {u Î U : ρ(u) Í P} where ρ(u) = {w Î U : uρw}. The dual operation of 
Lρ is defined by Mρ(P) = (Lρ(P

c))c = {u Î U : ρ(u) Ç P ¹ 0/ }, where (.)c is the complement 
operation. Lρ(P) and Mρ(P) are respectively the lower and upper approximations of P as 
defined in Subsection 3.1 on page 257. We adopt the new notations to make the correspondence 
with the modal operators L and M transparent.

Definition 21.   The truth set of a modal formula α Î ML in a Kripke model  = (U, 
ρ, v), denoted by [α]

, is defined by: 
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[p]
 = v(p)

[¬α]
  = ([α]

)c

[a  b]
= [a]

 È [b] 

[Lα
 = Lρ([α]

).

A formula α is true (or satisfied) at u in a model  (notation: , u╞k α, where the 
subscript K means ‘Kripke’) if u Î [α]

. A formula α is true in a model  (notation:  
╞ K α) if [α]

 = U.

A formula α is valid at u Î U in a Kripke frame  = (U, ρ) (notation: , u ╞k α) if α 
is true at u in every model  = (U, ρ, v).

A formula α is valid in a frame  (notation: ╞k α) if α is valid at each u Î U in the 
frame  .

For any modal system S, the set of all theorems in S is denoted by Thm(S). A normal 
modal system S is characterized by a class of frames F if for any modal formula α, α Î 
Thm(S) if and only if α is valid in all frames in F. The following results are well known:

1.	 K is characterized by the class of all frames.
2.	 S4 is characterized by the class of all S4 frames.
3.	 B is characterized by the class of all reflexive and symmetric frames.

For details of proof, one can see [18] and [6].

We shall now present rough set semantics for the modal logic systems. In order to do 
that it is required to observe the rough set theoretic equivalents of modal properties expressed 
by modal formulas.
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Rought set theoretic properties		  Corresponding modal properties

U U= 			   ( )|
Rule

|
N

L
− a

− a

P Q P Q∩ ⊆ ∩ 		  L(a b) Þ (La Lb)
P Q P Q∩ ⊆ ∩ 		  (La  Lb) Þ L(a b)

impliesP Q P Q⊆ ⊆ 		
|

| L L
− a ⇒ b

− a ⇒ b

P P⊆ 			   La Þ a(T)
P P⊆ 			   La Þ Ma(D)

( )P P⊆ 			   a Þ LMa (B)

( )P P⊆ 			   La Þ LLa (S4)
( )P P⊆ 			   MLa Þ La (S5)

( ) ( )ccP Q P Q∪ ⊆ ∪ 		  L(a Þ b) Þ (La Þ Lb) (K)

andP P  are respectively the lower and upper approximations of the set P which are 
defined in the relational approach (Subsection 3.1) and covering based approach (Subsection 
3.2 on page 259).

3.1	 Relational approach

As mentioned in the introduction an approximation space in Pawlak’s rough set theory is 
,U R  where U is a non empty set and R is an equivalence relation on U. A pair of lower-

upper approximations of any subset P of U is defined as

			   [ ]{ }:R RP u U u P= ∈ ⊆

and

			   [ ]{ }: 0 ,
R

RP u U u P= ∈ ∩ ≠ /

where [u]R = {v Î U : uRv}. This notion has been generalized by taking an arbitrary relation 
ρ in lieu of the equivalence relation R and imposing conditions like reflexivity, symmetry and 
transitivity etc. gradually on ρ [52,48,41]. This has been done in two steps. In the first step, a 
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granule ρu, for each u Î U, has been defined as ρu = {v Î U : uρv}. In the second step, for 

each subset P of U, lower approximation Pr  and upper approximation P
r

  are defined by

			   { } ( )( ): uP u U P L Pr r= ∈ r ⊆ =

and

			   { } ( )( ): 0 .uP u U P M P
r

r= ∈ r ∩ ≠ / =

With these definitions one can proceed towards their properties and depending on various 
properties (e.g. reflexivity, symmetry, transitivity, seriality and their various combinations) 
of the relation ρ various properties of the lower and upper approximations are obtained. 
The following Table 1 may be observed where the suffixes of ρ namely r, s and t or their 
combinations indicate that the relation is reflexive, symmetric and transitive respectively or 
their combinations. ρser denotes a serial relation.

Table 1: Properties of relation based approximations

r rr rs rt rrs rrt rst rrst rser

Duality of ,P P Y Y Y Y Y Y Y Y Y

0 0/ = / N N N N Y Y N Y Y

0 0/ = / Y Y Y Y Y Y Y Y Y

U U= Y Y Y Y Y Y Y Y Y

U U= N N N N Y Y N Y Y

P Q P Q∩ ⊆ ∩ Y Y Y Y Y Y Y Y Y

P Q P Q∩ ⊆ ∩ Y Y Y Y Y Y Y Y Y

P Q P Q∪ ⊆ ∪ Y Y Y Y Y Y Y Y Y

P Q P Q∪ ⊆ ∪ Y Y Y Y Y Y Y Y Y

P Í Q implies P Q⊆ Y Y Y Y Y Y Y Y Y

P Í Q implies P Q⊆ Y Y Y Y Y Y Y Y Y

P P⊆ N Y N N Y Y N Y N
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P P⊆ N Y N N Y Y N Y N

P P⊆ N Y N N Y Y N Y Y

( )P P⊆ N N Y N Y N Y Y N

( )P P⊆ N N Y N Y N Y Y N

( )P P⊆ N N N Y N Y Y Y N

( )P P⊆ N N N Y N Y Y Y N

( )P P⊆ N N N N N N N Y N

( )P P⊆ N N N N N N N Y N

( ) ( )ccP Q P Q∪ ⊆ ∪ Y Y Y Y Y Y Y Y Y

The above table is nothing but the Kripke semantics after being translated in rough set 
semantics.

3.2    Covering based approach

For the definitions 22 to 28 given below in covering based approach we depend on [28, 32, 
20, 14, 55, 53, 21, 39, 40, 41, 42, 10, 54, 33].

Definition 22.   (Covering of a set): Let U be a non empty set and C = {Ui(¹ 0/ ) Í U :  
i Î I}, where I is an index set, is said to be a covering of U if

			   .ii I
U U

∈
∪ =

Definition 23. (Covering approximation space): Let U be a non empty set and C be a 
covering of U. Then, the ordered pair ,U C  is called a covering approximation space.

Definition 24. (Friends of u): Let ,U C  be a covering approximation space. For each 
u Î U, Friends of u is defined by

			   ( ) .
i

C
iu U

F u U
∈

= ∪



260	 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

Journal of Combinatorics, Information & System Sciences

Definition 25. (Neighborhood of u): Let ,U C  be a covering approximation space. 
For each u Î U, Neighborhood of u is defined by

			   ( ) .
i

C
iu U

N u U
∈

= ∩

Definition 26. (Friends’ enemy of u): Let ,U C  be a covering approximation space. 
For each u Î U, Friends’ enemy of u is defined by

( ) ( )C CFE u U F u= −

Definition 27. (Kernel of u): Let ,U C  be a covering approximation space. For each 
u Î U, Kernel of u is defined by

			   ( ) ( ){ }: .C
i i iK u y U U u U y U= ∈ ∀ ∈ ⇔ ∈

Let PC = {Kc(u) : u Î U}. Then, PC is a partition of U and called partition generated 
by the covering C.

Definition 28.   (Minimal description and Maximal description of u): Let ,U C  be a 
covering approximation space. For each u Î U, Minimal description and Maximal description 
of u are defined respectively as

	 md(u) = {Ui Î  : u Î Ui and ∀Uj Î (u Î Uj Í Ui implies Uj = Ui)}.

and

	 Md(u) = {Ui Î  : u Î Ui and ∀ Uj Î (Uj Ê Ui implies Uj = Ui)}.

It is to be noted that both mdC(u) and MdC(u) are subsets of 2U, power set of U, while 
others are subsets of U.

Various Types of Lower and Upper Approximations

There are many lower-upper approximations in different literature based on covering 
cases. Some of them are dual approximations with respect to the set theoretic complementation 
while others are not so, called non-dual approximations. For our purposes, some of them 
(both dual and non-dual) available in [32, 39, 51, 20, 47, 55, 9, 14, 28, 33, 49, 53, 55, 
41,21,10,42,19] are presented below.
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( ) ( ){ }
( ) { }

1

1

: .

: 0 .

C

i i

P P u F u P

P P U U P

= ⊆

= ∪ ∩ ≠ /

	
( ) ( ) ( ){ }
( ) ( ) ( )( ){ }

2

2

: .

: 0 .

C C

C C

P P F u F u P

P P z y z F y F y P

= ∪ ⊆

= ∀ ∈ ⇒ ∩ ≠ /

	
( ) { }
( ) ( ){ }

3

3

: .

: 0 .
i i

i i i

P P U U P
P P z U z U U P

= ∪ ⊆

= ∀ ∈ ⇒ ∩ ≠ /

	
( ) ( ) ( ){ }
( ) ( ) ( ){ }

4

4

: .

: 0 .

C C

C C

P P K u K u P

P P K u K u P

= ∪ ⊆

= ∪ ∩ ≠ /

	
( ) { }
( ) ( )( ) { }

1

1

: .

: 0 .

i i
cc c

i i

C P U U P

C P A U U P

= ∪ ⊆

= = ∩ ∩ = /

	
( ) ( ){ }
( ) ( ){ }

2

2

: .

: 0 .

C

C

C P u U N u P

C P u U N u P

= ∈ ⊆

= ∈ ∩ ≠ /

	
( ) ( ) ( )( ){ }
( ) ( ) ( )( ){ }

3

3

: and N .

: 0 .

C C

C C

C P u U x x N u x P

C P u U x x N u N x P

= ∈ ∃ ∈ ⊆

= ∈ ∀ ∈ ⇒ ∩ ≠ /

	
( ) ( ) ( )( ){ }
( ) ( ) ( ){ }

4

4

: N .

: 0 .

C C

C C

C P u U x u N x x P

C P N u N u P

= ∈ ∀ ∈ ⇒ ⊆

= ∪ ∩ ≠ /

	
( ) ( )( ){ }
( ) ( ){ }

5

5

: .

: .

C

C

C P u U x u N x x P

C P N u u P

= ∈ ∀ ∈ ⇒ ∈

= ∪ ∈

With the same lower approximation there are a few different upper approximations.
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( ) ( ) ( ) ( ) ( ) ( ) ( ) { }# @ % 3 : .i iC P C P C P C P C P C P P P U C U P∗ − += = = = = = = ∪ ∈ ⊆

But the corresponding upper approximations are as follows.

	 ( ) ( ) ( ) ( ){ }: and .CC P C P T T md x x P C P∗ ∗ ∗= ∪ ∈ ∈ −

	 ( ) { }: 0 .i iC P U U P− = ∪ ∩ ≠ /

	 ( ) ( ){ }# : and .CC P T T md x x P= ∪ ∈ ∈

	 ( ) ( ) ( )( ){ }@ @ @: 0 .i iC P C P U U P C P= ∪ ∩ − ≠ /

	 ( ) ( ) ( ) ( )( ){ }: 0 .CC P C P N u u P C P+ + += ∪ ∈ − ≠ /

	 ( ) ( ) ( ) ( ) ( )( ){ }( )% % %: , .
c

C CC P C P F u u F E x x P C P= ∪ ∪ ∈ ∈ −

Two other types of lower and upper approximations are defined with the help of covering.

(1) 	 Let, ( ) { } ( )3: .i iGr P U U P P P∗ = ∪ ⊆ ≡  

	 This is taken as lower approximation of P and is denoted by ( ).GrC P  

	 Let, ( ) { } ( )1: 0 .i iGr P U U P P P∗ = ∪ ∩ ≠ / ≡

	 The upper approximation is defined by ( )GrC P  = Gr*(P) — N  EGGr(P), where 
( ) ( ).c

Gr GrN EG P C P=

(2) 	 A set D is said to be definable if and only if there exists a set A (Í U) such that 
	 D = Ux Î ANc(x). Let D = {D Í U : D is definable}. , : 2 2U U

t tC C →  are such that 
( )tC A  = È{D Î D : D Í A} and ( )tC A  = È{D Î  : A Í D}

It may be observed that È{D Î  : D Í A} = È{NC(x) : NC(x) Í A} = {x Î U : NC(x) 
Í A} = ( )tC A  and È{D Î  : A Í D} = È{NC(x) : x Î A} = ( )tC A .

The properties of various lower and upper approximations have been summarized in 
Table 2 [42].
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A few points should be noted here. First that the properties taken are not independent. 
Second, which is not properly noticed always, is that some of the approximations, though 
defined differently, are in fact the same. Such a case is the following.

			   ( ) ( ) ( )3 1 , for all .GrP A C A C A A U= = ⊆

Third, covering systems P1 to CGr are dual with respect to the lower and upper 
approximation operators while C* to Ct are non-dual systems.

Observation 1. In Table 2, two pairs 1 4 2 5, and ,P C C C  have identical columns. Still 
they are different operators as shown by examples given below.

Example 3. [42] Let U = {1, 2, 3, 4, 5, 6} and C = {U1, U2, U3, U4} where U1 = {1, 2}, 
U2 = {2, 3, 4}, U3 = {4, 5} and U4 = {6}. Now, FC(1) = 1 iU∈∪  Ui = {1, 2}, FC(2) = {1, 2, 3, 
4}, FC(3) = {2, 3, 4}, FC(4) = {2, 3, 4, 5}, FC(5) = {4, 5}, FC(6) = {6} and NC(1) = {1, 2}, 
NC(2) = {2}, NC(3) = {2,3,4}, Nc(4) = {4}, NC(5) = {4, 5}, NC(6) = {6}. Let Q = {4, 5}. Then, 

( ) ( )1 4{5} and 0.P Q C Q= = /  

Thus, 1 4andP C  are different.

Example 4. [42] Let U = {1, 2, 3} and C = {U1, U2} where U1 = {1, 2}, U2 = {2, 3}. 
Now, NC(1) = {1, 2}, NC(2) = {2}, NC(3) = {2, 3}. Let Q = {1, 2}. Then, ( )2C Q  = {1, 2} and 

( )5C Q  = {1}. Thus, 2 5andC C  are different.

We now present a table 3 [42] of dual systems, covering as well as relation based. In this 
table only the standard modal axioms are considered.

Table 3: Table of dual systems.

P1 P2 P3 P4 C1 C2 C3 C4 C5 CGr R Rr Rs Rt Rrs Rrt Rst Rrst

K Y N N Y N Y N Y Y N Y Y Y Y Y Y Y Y
D Y Y Y Y Y Y N Y Y Y N Y N N Y Y N Y
T Y Y Y Y Y Y N Y Y Y N Y N N Y Y N Y
B Y N N Y N N N Y N N N N Y N Y N Y Y
S4 N Y Y Y Y Y N N Y Y N N N Y N Y Y Y
S5 N N N Y N N N N N N N N N N N N N Y

Let us now focus only on the systems which possess K. Then depending on the identity 
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of the columns below, the systems are clustered in the following groups: {P1, C4, Rrs}, {P4, 
Rrst} and {C2, C5, Rrt}. Identity of P4 and Rrst was evident right from the beginning of Rough 
Set theory. From the other two groups we can say that P1 and C4 are at least modal system B 
(because of the presence of Rrs in the group) and not S5. Similarly, systems C2 and C5 are at 
least S4 and not S5. It has been proved in [22] that P1 and C4 are exactly system B and C2 and 
C5 are exactly system S4.

Covering semantics:

Definition 29. A covering frame is a pair  = (U, ) where U is a non-empty set and 
 is a covering of U.

A covering model is a triple  = (U, , v) where (U, ) is a covering frame and v : 
Prop ® 2U is a valuation.

Covering semantics for modal logic differs from the Kripke semantics only in the 
interpretation of modalities L and M.

Definition 30.   The truth set of a modal formula α Î ML in a covering model  = (U, 
, v) under λ semantics where λ Î {P1, C4, C2, C5}, denoted by [α]l


 , is defined by:

[p]l


  = v(p)

[¬a]l


 = ([a]l


)c

[α  β]l


 = [α]l


 È [β]l


[Lα]l
 

= λ([α]l


).

A formula α is true (or satisfied) at u in a covering model  (notation:  , u ╞λ α) 
if u Î [α]l

.

A formula α is true in a model  (notation:  ╞λ α) if [α]l


 = U.

A formula α is valid at u Î U in a covering frame FC = (U, ) (notation:   ,u ╞λ α) if 
α is true at u in every model  = (U, , v). A formula α is valid in a frame   (notation:   
╞λ α) if α is valid at each u Î U in the frame  .

Let τ(λ)  be the set of all tautologies in λ semantics, that is, τ(λ) = {α Î ML :   ╞λ α 
for any covering frame  }.
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P1 and C4 semantics:

With the above general definition of covering semantics we proceed for these particular 
covering systems. Thus for modal operators, P semantic clauses in a covering model  = 
(U, , v) are the following:

   , u ╞P1
 Lα if and only if for all Ui Î  and for all w Î U(u, w Î Ui implies    , w 

╞P1
 α).

  , u ╞P1
 Mα if and only if there exists Ui Î  such that for some w Î U(u, w Î Ui 

and   , w ╞P1
 α).

The strategy that has been used [22] to prove τ(P1) = Thm(B) is by reducing the P1 
semantics to the Kripke semantics for the modal logic B.

Definition 31. For a reflexive and symmetric Kripke frame  = (U, ρ), the P1 lifting of 
 is defined by the structure C P1 = (U, ρ

P1) where ρ
P1 = {{u, w} Í U : uρw}

The function Nρ
P1 : U → 2U is defined by Nρ

P1(u) = È{{u, w} Î ρ
P1 : w Î U}.

Proposition 2. Let C P1 = (U, Cρ
P1) be the P1 lifting of a reflexive and symmetric Kripke 

frame  = (U, ρ). Then the following hold:

1.	 ρ
P1 is a covering of U.

2.	 For all u Î U, Nρ
P1 (u) = ρ(u).

Thus, for any reflexive and symmetric Kripke model  = (U, ρ, v), we have the 
covering model (P1 lifting of ) 

P1 = (U, ρ
P1, v).

Lemma 1. Let  = (U, ρ) and  = (U, ρ, v) be any reflexive and symmetric Kripke 
frame and model. Then for any formula α and for any u Î U, the following hold:

1.	   , u ╞K α if and only if 
P1, ╞P1

 α.
2.	  ╞K α if and only if 

P1 ╞P1
 α.

3.	 , u ╞K α if and only if 
P1, u ╞P1

 α
4.	  ╞K α if and only if 

P1 ╞P1
 α

Theorem 6. τ(P1) = Thm(B).

We now discuss about the logic of C4 semantics. It is also exactly the modal logic B. For 
modal operators, C4 semantic clauses in a covering model  = (U, , v) are the following:
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  , u ╞C4
 Lα if and only if for all x, w Î U(u, w Î NC(x) implies  , w ╞C4

 α).

, u ╞C4
 Mα if and only if there exist x, w Î U(u, w Î NC(x) and  , w ╞C4

 α).

Definition 32. For a reflexive and symmetric Kripke frame  = (U, ρ), the C4 lifting of 
 is defined by the structure 

C4 = (U, r
C4) where r

C4 = {ρ(u) : u Î U}

The function Nr
C4 : U ® 2U is defined by Nr

C4(u) = È{ρ(w) Î r
C4 : u Î ρ(w)}.

As ρ is reflexive, r
C4 is a covering of U.

Thus, for any reflexive and symmetric Kripke model  = (U, ρ, v), we have the 
covering model (C4 lifting of ) 

C4 = (U, r
C4,v).

Lemma 2. Let  = (U, ρ) and  = (U, ρ, v) be any reflexive and symmetric Kripke 
frame and model. Then for any formula α and for any u Î U, the following hold:

1.	 , u ╞K α if and only if 
C4, u ╞C4 

α.
2.	  ╞K α if and only if 

C4 ╞C4
 α.

3.	 , u ╞K α if and only if 
C4, u ╞C4

 α
4.	  ╞K α if and only if 

C4 ╞C4
 α

Theorem 7. τ(C4) = Thm(B).

From Theorem 6 and Theorem 7, it follows that τ(P1) = Thm(B)= τ(C4).

C2 and C5 semantics:

The C2-semantic clauses for modal operators in a covering model  = (U, , v) are 
as follows:

, u ╞C2
 Lα if and only if for all w Î U(w Î NC(u) implies , w ╞C2

 α)

, u ╞C2
 Mα if and only if there exists w Î U(w Î NC(u) and , w ╞C2

 α)

Definition 33. For an S4 frame  = (U, ρ), the C2 lifting of  is defined by the 
structure 

C2 = (U, r
C2) where r

C2 = {ρ(u) : u Î U}. The function Nr
C2 : U ® 2U is defined 

by Nr
C2(u) = Ç{ρ(w) Î r

C2 : u Î ρ(w)}.

Proposition 3. Let 
C2 = (U, r

C2) be the C2 lifting of an S4 frame  = (U, ρ). Then 
the following hold:
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1.	 r
C2 is a covering of U.

2.	 For all u Î U, Nr
C2(u) = ρ(u).

Thus, for any S4 model  = (U, ρ, v), we have the covering model 
C2 = (U, r

C2,  v).

Lemma 3. Let  = (U, ρ) and  = (U, ρ, v) be any S4 frame and model. Then for any 
formula α and for any u Î U, the following hold:

1.	 , u ╞K α if and only if 
C2, u ╞C2 

α.
2.	  ╞K α if and only if 

C2 ╞C2
 α.

3.	  , u ╞K α if and only if 
C2, u ╞C2

 α
4.	  ╞K α if and only if 

C2 ╞C2
 α

Theorem 8. τ(C2) = Thm(S4).

We now present the C5 semantics. For modal operators, semantic clauses are the 
following:

 , u ╞C5
 Lα if and only if for all w Î U(u Î NC (w) implies   , w ╞C5

 α ) .

 , u ╞C5
 Mα if and only if there exists w Î U(u Î NC (w) and , w ╞C5

 α )

It has been shown that the logic of C5 semantics is also the modal logic S4.

Definition 34. For an S4 frame  = (U, ρ), the C5 lifting of  is defined by the 
structure 

C5 = (U, r
C5) where r

C5 = {ρ–1(u) : u Î U} and ρ–1(u) = {w Î U : wρu}.

Moreover, the function Nr
C5 : U → 2U is defined by Nr

C5(u) = Ç{ρ–1(w) Î r
C5 : u Î 

ρ_1(w)}.

Proposition 4. Let 
C5 = (U, r

C5) be the C5 lifting of an S4 frame  = (U, ρ). Then 
the following hold:

1.	 r
C5 is a covering of U.

2.	 For all u Î U, Nρ
C5(u) = ρ_1(u).

Thus, for any S4 model  = (U, ρ, v), we have the covering model (C5 lifting of ) 
C

C5 = (U, r
C5, v).

Lemma 4. Let  = (U, ρ) and  = (U, ρ, v) be any S4 frame and model. Then for any 
modal formula α and for any u Î U, the following hold:
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1.	 , u ╞K α if and only if 
C5, u ╞C5 

α.
2.	  ╞K α if and only if 

C5 ╞C5
 α.

3.	 , u ╞K α if and only if 
C5, u ╞C5

 α
4.	  ╞K α if and only if 

C5 ╞C5
 α

Theorem 9. τ(C5) = Thm(S4).

From Theorem 8 and Theorem 9, it follows that τ(C2) = Thm(S4) = τ(C5).

Thus, the modal system B captures P1 and C4 semantics and for C2 and C5 semantics, 
S4 serves the purpose.

In [25] a modal system for C1 semantics is obtained. Moreover, the technique used in 
[25] to develop the modal system for C1 semantics is different from the method adopted in 
[22]. Completeness theorem for C1 semantics has been proved by constructing a canonical 
covering model.

We now present the C1 semantics. For modal operators, semantics clauses are the 
following:

 , u ╞C1
 Lα if and only if there exists Ui Î C such that u Î Ui and  , w ╞C1

 α , 
for all w Î Ui.

, u ╞C1
 Mα if and only if for all Ui Î C, either u Î Ui or there exists w Î Ui such 

that  , w ╞C1
 α .

A new modal system M
1CL  is defined which consists of the following axioms and rules 

of inference. 

Axioms:

PCA: All axioms of classical propositional logic,

M: L(α  β) Þ (Lα  Lβ),

Top: L , where  is a propositional constant in the alphabet of the language of M
1CL ,

T: Lα Þ α,

S4: Lα Þ LLα,



Journal of Combinatorics, Information & System Sciences

	 Algebras and Logics Emerging Out of Rough Sets	 271

Rules:

	
,

MP : ,
a a ⇒ b

b

	 RE : .
L L

a ⇔ b
a ⇔ b

It is to be noted that the inference rules N and RM are derivable in M
1CL , where N, RM 

are

	 N : ,
L
a
a

	 RM : .
L L

a ⇒ b
a ⇒ b

One can easily verify the following soundness theorem by proving the validity of the 
axioms and the inference rules. 

1
|

CM L−  α means α is a theorem of M
1CL

Theorem 10.   (Soundness): For each wff α, if 
1

|
CM L−  α then ╞C1

 α.

We now present a sketchy proof of the corresponding completeness theorem available 
in [25]. Only the modal points are presented here. Recall the notion of maximal consistent set 
[6]. The following notion of canonical covering based on maximal consistent sets plays a key 
role in the proof. The notation Mcs is used to denote the set of all M LC1

 -maximal consistent 
sets. Further, let α1, α2, ... be an enumeration of all the wffs of the language of M LC1

.

Definition 35. (Canonical Covering Model): The canonical covering model is defined 
as the tuple CC = (Mcs, ¢, v¢), where

—	 ¢i = {∆ Î Mcs : αi  Lαi Î ∆}, ∀i Î ℕ;
—	 ¢ = {¢i : i Î ℕ};
—	 v¢(p) = {∆ Î Mcs : p Î ∆}.

It is to be noted that C¢i may be an empty set for some i Î ℕ. 

Lemma 5.  (Mcs, ) is a covering space.
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Lemma 6. (Lindenbaum’s Lemma): Let ∆ be an M LC1 
-consistent set of wffs. Then there 

exists an M LC1 -maximal consistent set ∆+ containing ∆.

Lemma 7.   (Existence Lemma): Let ∆ Î M LC1
. The following hold.

1.	 If Lα Î ∆ then there exists a ¢i Î ¢  such that ∆ Î ¢i and α Î ∆¢ for all ∆¢ Î ¢i.
2.	 If Mα Î ∆ then for all ¢i Î ¢, either ∆ Ï ¢i or there exists a ∆¢ Î ¢i such that 
	 α Î ∆¢.

Lemma 8. (Truth Lemma): For any wff α and ∆ Î Mcs, α Î ∆ if and only if , ∆ 
╞C1

 α .

 
Theorem 11.  (Completeness Theorem): For any wff α, if ╞C1

 α then 
1

|
CM L−  a.

Similarly it can be shown that for σ Î {P3, CGr}, ╞σ α if and only 
1

|
CM L−  a.

Thus modal systems corresponding to groups of covering systems {P1,C4}, {P4}, 
{C2, C5}, {C1, P3,CGr} are obtained. Besides, a modal system (which is a bi-modal one) 
corresponding to the non-dual covering system Ct was proposed in [17] and reported in [25]. 
For the other covering systems the problem is open.

3.3    Rough Consequence Logics and Approximate Reasoning

Another direction of research in logic arising from rough set studies is what is known 
as rough consequence logics. This constitutes a cluster of logics which are generalization 
of modal logics and are based upon rough modus ponens (RMP) rules. The first paper in 
this direction is [13]. Afterwards Martin Bunder published a paper [11] which generated 
momentum and the main work on this topic is a joint paper [12] published in 2008. Samanta 
[38] further contributed in this area. The idea in its most generality is to graft a logic on top 
of a modal system S with the help of the new rules of inference RMP.

Let S be a modal system with |–S as its consequence relation. New logic systems SR are 
then defined using rough consequence relation ||–R by the following axioms. For all sets Γ of 
wffs and a wff a,

1.	 If |–S a then Γ ||–R a.

2.	 {a} ||–R a.
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3.	 If Γ ||–R a then Γ È D ||–R  a.
4.	 RMP may be applied to obtain a step in the derivation.

A group of rules fall under the category RMP viz.

			 
( ), , | ,R R S

R

FΓ − a Γ − b ⇒ d − a b
Γ − d

 



where F(a, b) is one of the following list of well formed formulas. 
(a) La Þ Lb (b) La Þ b (c) La Þ Mb (d) a Þ Lb (e) a Þ b (f) a Þ Mb (g) Ma Þ Lb 

(h) Ma Þ b (i) Ma Þ Mb (j) M(a Þ b) (k) L(a Þ b) (l) (La Þ Lb)  (Ma Þ Mb)  (m) ((La 
Þ LB)  (Ma Þ Mb))  ((Lb Þ La)  (Mb Þ Ma))

The interpretation of |–S F(a, b) when F(a, b) = La Þ Lb is that Lp(v(a)) Í Lp(v(b)) 
where v(a) is the interpretation of a in the universe U. Thus the RMP rule with (a) means:

 “if a and b Þ d roughly follow from Γ and the lower approximation of the interpretation 
of a is a subset of the lower approximation of the interpretation of b in a Kripke frame (S, r), 
then d roughly follows from Γ  ”. 

Similarly the other cases may be interpreted.

Taking b = a the standard MP rule is obtained. Thus all the RMP rules (a) to (m) are 
generalization of the classical MP rule. Also it is proved that the rough consequence relation 
||–R satisfies the Tarskian conditions of logical consequence viz.

—	 if sets a Î Γ then Γ ||–R a (overlap or reflexivity),
—	 if Γ, a ||–R  b and D ||–R a then Γ È A ||–R  b (cut),
—	 if Γ ||–R a then g1,g2, ... gn ||–R a for some g1,g2, ... gn Î Γ (compactness),
— 	 if Γ ||–R a then if Γ È ∆ ||–R a (dilution or monotonicity).

So, following Tarski, rough consequence logics are genuine logics and from the 
interpretations given above, it is clear that these bunch of rough logics can be used in 
approximate reasoning.

It should be mentioned that two other RMP rules are also defined in the original paper 
[13] which took final shapes in [4] as follows.
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5
, |R S

R

M M
M M

Γ − a − a ⇒ b

Γ − a ∧ b





and
,

.R R

R

M M
M M

Γ − a Γ − b
Γ − a ∧ b
 



This rough consequence logic grafted on S5 with the above two rules, captures the 
notion of rough truth proposed by Pawlak in [27]. This logic also turns out to be equivalent 
to Jaskowski’s discussive logic J proposed in 1948. Interestingly, the logic system J is 
considered to be the predecessor of paraconsistent logic which is now a days an important 
branch of research.

4.	 Membership Function Based MF-rough Sets
In this section we focus on the following definition of Pawlakian rough set.

Definition 36. A rough set is a triple [ ], ,U R ⋅ ≈  where U is a nonempty set, R is an 
equivalence relation on U and [ ]⋅ ≈  is an equivalence class with respect to the relation ≈ of 
rough equality on the power set 2U of U viz. P ≈ Q if and only if , , .P Q and P Q P Q U= = ⊆

4.1     Rough Membership Function

Taking the universe U as finite the notion of rough membership function was formally defined 
by Pawlak and Skowron in [29] and applied to develop rough mereology [30,31].

Definition 37. Given any subset P Í U, a rough membership function fP is a mapping 

from U to Ra[0, 1], the set of rational numbers in [0, 1], defined by ( )
[ ]( )

[ ]( )
R

P
R

Card u P
f u

Card u

∩
=   

for all u Î U.

For our purpose, we take U as any set, finite or infinite, but assume that the equivalence 
classes [ ]R⋅  or blocks generated by R are all of finite cardinality.

Observation 2.

1.	 fP(u) = 1 if and only if .u P∈

2.	 fP(u) = 0 if and only if ( ) .
c

u P∈
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3.	 0 < fP(u) < 1 if and only if u Î Bd(P) = .P P−

4.	 fP(u) = fP(v) for uRv.

Observation 3. Each block [ ]R⋅  being finite, there is a fixed set of rational numbers in 

[0, 1] that are admissible values for the members of the block viz. 
1 2 1

0, , , ..., , 1 ,
n

n n n
− 

 
 

 

where Card( [ ]R⋅ ) = n. This set of admissible values is determined right at the beginning when 
the partition is formed in U. Under a rough membership function fP all elements of a block 
receive the same value out of the set of admissible values associated with the particular block 
which will be denoted by admiss-value [.]. This value shall also be referred to as the value of 
the block under the rough membership function and denoted by fP([.]).

Observation 4. Some properties of rough membership functions are listed below.

1.	 If fP = fQ then P ≈ Q but the converse does not hold.
2.	 If P ≈ Q then fP(u) = 1 if and only if fQ(u) = 1 and fP(u) = 0 if and only if fQ(u) = 0.
3.	 If for some P, u, 0 < fP(u) < 1 then there exists Q ¹ P such that fP = fQ.
4.	 fPc(u) = 1 – fP(u) for all u Î U.
5.	 If P Í Q then fP £ fQ, but the converse does not hold.

6.	 If fP £ fQ then and ,P Q P Q⊆ ⊆  i.e., P is roughly included in Q.

7.	 max[0, fP(u) + fQ(u) – 1] £ fPÇQ(u) £ min[fP(u), fQ(u)].
8.	 max[fP(u), fQ(u)] £ fPÈQ(u) £ min[1,fP(u) + fQ(u)].
9.	 fPÈQ(u) = fP(u) + fQ(u) – fPÇQ(u).

The results 7, 8 and 9 are proved by Yao [50].

4.2    MF-rough sets

We now give the definition of an MF-rough set.

Definition 38. [16] Let º be the relation defined on 2U by P º Q if and only if fP = fQ. 
Then, º is an equivalence relation generating a partition on 2U. An MF-rough set is a triple 

[ ], ,U R ⋅ ≡  where U, R are as before and [ ]⋅ ≡  is a member of the quotient set 2 .U
≡
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Observation 5. The relation º generates a finer partition on 2U than ≈. That is, the 
power set 2U receives two partitions due to ≈ and º such that each equivalence class [ ]⋅ ≈  is 
the union of some equivalence classes [ ]⋅ ≡ .

Note 1. When U and R are fixed, any equivalence class [ ]⋅ ≈  is a rough set and any 
equivalence class [ ]⋅ ≡  is an MF-rough set.

An MF-rough set [P]º is a rough set if and only if [P]º = [P]≈, that is, if and only if 
P ≈ Q implies fP = fQ.

Example 5. U = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12},

R = {u1, u2}, {u3, u4, u5}, {u6}, {u7, u8, u9, u10}, {u11, u12}.

Any member of 2U
≈  is a rough set. 

Any member of 2U/ º is an MF-rough set.

Let us take the rough set with {u7, u8, u9, u10} and {u11, u12} in the lower approximation 
and {u6} as the complement of the upper approximation. That is, the equivalence classes {u1, 
u2} and {u3, u4, u5} constitute the boundary. We display all the subsets of U belonging to this 
equivalence class.

Lower approximation:{u7, u8, u9, u10} È {u11, u12}. Let the element taken from the 
boundary set {u1, u2} be u1.

Now, elements taken from the boundary set {u3, u4, u5} may be u3/u4/u5/u3, u4/u3, u5/
u4, u5. Let the subsets obtained be denoted by B1, B2, B3, B4, B5 and B6 respectively. Similarly 
choosing u2 from {u1, u2} we get sets B7, B8, B9, B10, B11 and B12. 

According to our definition this rough set is the triple { }1 2 12, , , , ..., .U R B B B  It 

should be noted that all the three components X, R and the collection of sets { }1 2 12, , ...,B B B  
are to be essentially displayed for the definition that is taken in this paper.

Now corresponding to this rough set there are two MF-rough sets viz.
{ }1 2 3 7 8 9, , , , , , ,U R B B B B B B  and { }4 5 6 10 11 12, , , , , , ,U R B B B B B B  since ,

iBf  i = 1, 
2, 3, 7, 8, 9 give the same rough membership function  viz. ,

iBf ({u7, u8, u9, u10}) = ,
iBf ({u11, 

u12}) = 1, ,
iBf ({u6}) = 0, ,

iBf ({u1, u2}) = 1/2, ,
iBf ({u3, u4, u5}) = 1/3 and ,

jBf  j = 4, 5, 6, 10, 
11, 12 give the same rough membership function viz. ,

jBf ({u7, u8, u9, u10}) = ,
jBf ({u11, u12}) 

= 1, ,
jBf ({u6}) = 0, ,

jBf ({u1, u2}) = 1/2, ,
jBf ({u3, u4, u5}) = 2/3.
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From the display of R one can immediately say that { }, ,U R D  where D is the union 
of some blocks due to R is a rough set and also is an MF-rough set.

This example also shows that neither concept is a generalization of the other.

The following three fundamental theorems [16] are now stated.

Theorem 12. Given ,U R  and subsets P, Q of U there exists a subset A of U such that 
fA = fP  fQ (pointwise).

Theorem 13. Given ,U R  and subsets P, Q of U there exists a subset B of U such that 
fB = fP  fQ (pointwise).

Theorem 14. The subsets A and B defined in Theorems 12 and 13 satisfy the properties 
, and , .A P Q A P Q B P Q B P Q= ∩ = ∩ = ∪ = ∪

Definition 39. Because of Theorems 12 and 13 we are able to define rough membership 
function algebra (RMF-algebra) [16] for a fixed approximation space ,U R  viz. {{fP}P Í U, 
, , ¬, 0 ,f /  fU} where {fP}P Í U denotes the set of distinct rough membership functions not 
their family and ¬ fP = 1 – fP = fPc.

Theorem 15. The RMF-algebra on an approximation space ,U R  is a quasi-Boolean 
algebra.

We have defined two other unary operators I and C in RMF-algebra by I fP = fP and 
C  fP = .Pf

These are dual operators in the sense that ¬I¬fP = C  fP and ¬C ¬ fP = I fP.

Theorem 16. The algebra {{fP}P Í U, ,, ¬, I, C, 0 ,f /  fU} has the following properties:

1.	 I fU = fU,
2.	 I fP < fP,
3.	 I(fP  fQ) = I fP  I fQ,
4.	 I  I  fP = I  fP ,
5.	 C  I fP = I fP ,
6.	 ¬I fP  I fP = fU,
7.	 I(fP  fQ) = I fP  I fQ
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Observation 6. In [1] the rough set algebra RS was proved to be a pre-rough algebra. 
The RMF-algebra enhanced with I and C however does not form a pre-rough algebra since it 
lacks the property that I  fP < I  fQ and C  fP < C  fQ imply fP < fQ (see Example 6 and Note 2). This 
marks a significant difference between rough set structure and MF-rough set structure. In fact, 
the RMF-algebra is a model of abstract algebraic structure IA1+IA2 where it is unresolved 
till now whether an Þ can be defined in general or not obeying the property (PÞ). However, 
such an Þ can be defined in the RMF-algebra by using Gödel arrow viz.

			   u Þ v = 1 if u £ v, 
	                                                    = v if u > v.

This arrow may now be extended to rough membership functions as follows.

			   (fP Þ fQ)(u) = fP(u) Þ fq(u) for each u.

So, if fP £ fq then (fP Þ fQ)(u) = 1 for all u, i.e., fP Þ fQ = fU. If fP > fQ for all u, then (fP 
Þ fQ)(u) = fQ(u), i.e., fP Þ fQ = fQ. 

If for some u, fP(u) < fQ(u) and for some v, fP(v) > fQ(v) then (fP Þ fQ)(u) = 1 for some 
u and (fP Þ fQ)(v) = fQ(v) for some v. In this case a subset S of U is defined by S = {Èu[u]R : 
fP(u) £ fQ(u)} È {Èv(B Ç [v]R) : fP(v) > fQ(v)}. So, fS(u) = 1 = fP(u) £ fQ(u) and fS(v) = fQ(v) 
= fP(v) Þ fQ(v). Thus in any case there exists a set S Í U such that fP Þ fQ = fS. So the set 
{fP}P Í U is closed with respect to the operation Þ. Clearly, fP Þ fQ = fU if and only if fP £ fQ.

Two examples of RMF-algebra, one linear and other non-linear, have been presented 
in [35] as models of the structure IA1+ IA2. We now present here only the non-linear one.

Example 6. A eight element non-linear RMF algebra has been constructed as follows:

Let, U = {a, b, c, d} and let the relation be R = ({a, b, c} × {a, b, c}) È {(d,d)}.

Now, 2U = { 0/ , {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, 
{a, b, d}, {a, c, d}, {b, c, d}, U}. The rough membership functions are defined by

0f / (a) = 0, f{a}(a) =  1/3, f{b}(a) =  1/3, f{c}(a) = 1/3, f{d}(a) = 0

0f / (b) = 0, f{a}(b) = 1/3, f{b}(b) = 1/3, f{c}(b) = 1/3, f{d}(b) = 0 

0f / (c) = 0, f{a}(c) = 1/3, f{b}(c) = 1/3, f{c}(c) = 1/3, f{d}(c) = 0 

0f / (d) = 0, f{a}(d) = 0, f{b}(d) = 0, f{c}(d) = 0, f{d}(d) = 1

f{a, b}(a) = 2/3, f{b, c}(a) = 2/3, f{c, a}(a) = 2/3, f{a, d}(a) =  1/3, f{b, d}(a) = 1/3, f{c, d}(a) = 1/3
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f{a, b}(b) = 2/3, f{b, c}(b) = 2/3, f{c, a}(b) = 2/3, f{a, d}(b) =  1/3, f{b, d}(b) = 1/3, f{c, d}(b) = 1/3 
fU(b) = 1

f{a, b}(c) = 2/3, f{b, c}(c) = 2/3, f{c, a}(c) = 2/3, f{a, d}(c) =  1/3, f{b, d}(c) = 1/3, f{c, d}(c) = 1/3 
fU(c) = 1

f{a, b}(d) = 0, f{b, c}(d) = 0, f{c, a}(d) = 0, f{a, d}(d) =  1, f{b, d}(d) = 1, f{c, d}(d) = 1

f{a, b, c}(a) = 1, f{a, b, d}(a) = 2/3, f{a, c, d}(a) = 2/3, f{b, c, d}(a) = 2/3, fU(a) = 1

f{a, b, c}(b) = 1, f{a, b, d}(b) = 2/3, f{a, c, d}(b) = 2/3, f{b, c, d}(b) = 2/3, fU(b) = 1

f{a, b, c}(c) = 1, f{a, b, d}(c) = 2/3, f{a, c, d}(c) = 2/3, f{b, c, d}(c) = 2/3, fU(c) = 1

f{a, b, c}(d) = 0, f{a, b, d}(d) = 1, f{a, c, d}(d) = 1, f{b, c, d}(d) = 1, fU(d) = 1

We have, here, eight distinct rough membership functions

{ 0f / , f{a}, f{d}, f{a, b}, f{a, d}, f{a, b, c}, f{a, b, d}, fU}.

It can be easily verified from the lattice whose Hasse diagram is shown in Figure 6 that 
{{ 0f / , f{a}, f{d}, f{a, b}, f{a, d}, f{a, b, c}, f{a, b, d}, fU}, , , ¬, I, C, 0f / , fU} is a RMF-algebra which 
satisfies all the axioms of the structure IA1 + IA2, where ¬, I are given by

¬	 0f / 	 f{a}	 f{d}	 f{a, b}	 f{a, d}	 f{a, b, c}	 f{a, b, d}	 fU

	 fU	 f{a, b, d}	 f{a, b, c}	 f{a, d}	 f{a, b}	 f{d}	 f{a}	 0f /

	 0f / 	 f{a}	 f{d}	 f{a, b}	 f{a, d}	 f{a, b, c}	 f{a, b, d}	 fU

I	 0f / 	 0f / 	 f{d}	 0f / 	 f{d}	 f{a, b, c}	 f{d}	 fU

C	 0f / 	 f{a, b, c}	 f{d}	 f{a, b, c}	 fU	 f{a, b, c}	 fU	 fU
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Fig. 6: Hasse diagram(non-linear RMF algebra).

Now, in this RMF-algebra the binary operation Þ as mentioned above gives the 
following table.

Þ	 0f / 	 f{a}	 f{d}	 f{a, b}	 f{a, d}	 f{a, b, c}	 f{a, b, d}	 fU

0f / 	 fU	 fU	 fU	 fU	 fU	 fU	 fU	 fU

f{a}	 0f / 	 fU	 f{d}	 fU	 fU	 fU	 fU	 fU

f{d}	 0f / 	 f{a, b, c}	 fU	 f{a, b, c}	 fU	 f{a, b, c}	 fU	 fU

f{a, b}	 0f / 	 f{a}	 f{d}	 fU	 f{a, d}	 fU	 fU	 fU

f{a, d}	 0f / 	 f{a}	 f{d}	 f{a, b, c}	 fU	 f{a, b, c}	 fU	 fU

f{a, b, c}	 0f / 	 f{a}	 f{d}	 f{a, b}	 f{a, d}	 fU	 f{a, b, d}	 fU

f{a, b, d}	 0f / 	 f{a}	 f{d}	 f{a, b}	 f{a, d}	 f{a, b, c}	 fU	 fU

fU	 0f / 	 f{a}	 f{d}	 f{a, b}	 f{a, d}	 f{a, b, c}	 f{a, b, d}	 fU

Note 2. In the above example, we can see that I f{a} = I f{a, b} and C f{a} = C f{a,b}.

So, I f{a, b} < I f{a} and C f{a ,b} < C f{a} but f{a, b} ≤  f{a}. Hence, this example is an instant 
where the property Iu £ Iv and Cu £ Cv imply u £ v, for all u,v, does not hold in a RMF-
algebra.
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Theorem 17. In the algebra ({fP}P Í U, , , ¬, I, C, 0f / , fU} let a binary relation ρ be 

defined by fP  ρfQ if and only if I fP = I fQ and C fP = C fQ. Then ρ is a congruence relation.

Theorem 18.   The quotient algebra  is 
isomorphic with the rough set algebra RS under the mapping ψ([fA]ρ) = [A]≈ where [fA]ρ  
[fB]ρ = [fA  fB]ρ = [fP]ρ , fP = fA  fB,

[fA]ρ  [fB]ρ = [fA  fB]ρ = [fQ]ρ, fQ = fA  fB,

Neg[fA]ρ = [¬  fA]ρ and [fA]ρ = [I fA]ρ equivalently (C[fA]ρ = [C fA]ρ).

4.3    A logic for MF-rough sets

A logic for MF-rough sets has been developed in [16] using the Þ (Gödel arrow 
extended over rough membership functions) discussed in Observation 6.

The logic MF:  The alphabet of the language consists of propositional variables: p1, 
p2, ..., connectives: ¬, , , Þ, I, C [the same symbols are used abusively in the algebra and 
logic]. The wffs are defined in the usual fashion. 

Axioms for MFRS:

1.	 α Þ ¬ ¬ a
2.	 ¬ ¬α Þ a
3.	 α  β Þ β
4.	 α  β Þ β  α
5.	 α  (β  γ) Þ (α  β)  (α  γ)
6.	 (α  β)  (α  γ) Þ α  (β  γ)
7.	 Iα Þ α
8.	 Iα Þ IIα
9.	 Iα  Iβ Þ I(α  β)
10.	 CIα Þ Iα
11.	 I(α Þ β) Þ (Iα Þ Iβ)
12.	 ¬Iα  Iα
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Rules of inference:

1.	
,a a ⇒ b

b

2.	
,a ⇒ b b ⇒ g

a ⇒ g

3.	
a

b ⇒ a

4.	
a ⇒ b

¬b ⇒ ¬a

5.	
,a ⇒ b a ⇒ g

a ⇒ b ∧ g

6.	
, ,a ∨ b a ⇒ g b ⇒ g

g

7.	
I I
a ⇒ b
a ⇒ b

8.	
I
a
a

The interpretation is given in a domain ,U R  which is an approximation space such 
that the equivalence classes of R are of finite cardinality.

The interpretation of a wff is defined by a valuation function v given by:

	 v(pi) is an arbitrary MF-rough set fP , 
	 v(¬α) is ¬v(α), 
	 v(Iα) is Iv(α), 
	 v(Cα) is Cv(α), 
	 v(α  β) is v(α)  v(β), 
	 v(α  β) is v(α)  v(β),
	 v(α Þ β) is v(α) Þ v(β) where the last Þ is a Gödel arrow extended over rough 
	 membership functions.
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A wff α is valid in ,U R  if and only if v(α) = fU for all valuations v in ,U R  and is 
universally valid if and only if it is valid in all domains.

Theorem 19. [16] The formal system LMF is sound with respect to MF-rough set 
semantics i.e. if α is a theorem in LMF then α is universally valid.

Note 3. It is not claimed that this set of axioms and rules form a minimal set. Nor do we 
claim completeness. Modal axioms K, T, S4, B are all present in the above logic but remember 
that the base logic is quasi-Boolean instead of Boolean.

In a recent paper [23] some applications of MF-rough sets have been discussed.

5.   	 Rough set models of various algebras
In Section 2, we have presented a number of algebras based on qBa. Amongst them, some of 
the algebras such as tqBa, tqBa5, IA1, IA2, IA3, SystemI algebra, SystemII algebra etc. are 
stronger than qBa but weaker than pre-rough algebra. The abstract pre-rough algebra has a 
rough set model [1] which is described at the beginning of Section 2. Now a question may be 
raised: how can we construct proper set theoretic rough set models of these algebras which 
are basically weaker than pre-rough algebra? The phrase ‘proper set theoretic rough set 
model’ means that it should be a set model and should not reduce to a pre-rough algebra. It is 
to be noted that for any approximation space ,U R , 2U/, , , ¬, I, [ 0/ ], [U]  becomes 
a pre-rough algebra and hence it satisfies more axioms than the axioms present in the aforesaid 
algebras. In [43,44] the present authors have made an effort on this issue. First, we observe 
that if 2U is taken in place of 2U/ (that means ordinary set is considered in place of rough set 
[P]), 2U, ,   fails to form a lattice as P  Q ¹ Q  P. So, we cannot proceed further 
using these operations  and . On the other hand, if set theoretic intersection and union are 
considered in place of  and  respectively then 2 , , , , 0,U U∩ ∪ ¬ /  immediately turns 
into a Boolean algebra instead of a quasi-Boolean algebra as ¬P usually means Pc. To 
overcome the situation we follow Rasiowa [34]. In [34], a representation theorem for quasi-
Boolean algebra was presented. We focus our attention on this representation theorem. The 
notions of quasi-complementation and quasi-field of subsets of a set U have been discussed in 
that book. Let U be a non empty set and g : U → U be an involution i.e., g(g(u)) = u, for all 
u Î U. Clearly, every involution g is a bijective mapping. The quasi-complementation  ¬ is 
defined by ¬P = U – g(P) = g(P)c, for each P Í U. Then, a collection Q(U) of subsets of U, 
containing U and closed under set-theoretical union, intersection as well as the quasi-
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complementation ¬, ( ) , , , , 0,Q U U∩ ∪ ¬ /   is called a quasi-field of subsets of U. It has 
also been shown that quasi-field of sets are typical examples of qBa, in the sense that every 
quasi-Boolean algebra is isomorphic to a quasi-field of sets. In this way, for a non empty set 
U, 2 , , , , 0,U U∩ ∪ ¬ /  is a qBa, where ¬ is the quasi-complementation, i.e, ¬P = g(P)c. It 
is to be noted that for an arbitrary involution g on U, the quasi-complementation and 
complementation (set-theoretical) of a subset P of U are not the same i.e., ¬P(= g(P)c) ¹ Pc 

(see Example 9). Due to this fact, again a problem arises to define I. If in a generalized 

approximation space , ,U I P Prr =  is taken then ( )( )c
cC P I P g g P P

r

r
= ¬ ¬ = ≠  in 

general. In fact, andP P
r

r  are dual approximations in a generalized approximation space 

,U r  with respect to the set theoretical complementation whereas I and C are dual operations 
with respect to the quasi-negation ¬ in the algebras discussed in Section 2 . However, we have 
solved the issue by defining a new approximation space , gU r  from a generalized 

approximation space ,U r , U being a non empty set and ρ being an arbitrary relation on U 
and g, an arbitrary involution on U. Using ρg, a pair of lower-upper approximations has been 
defined to obtain proper set theoretic rough set models of some of the algebras mentioned in 
section 2. Moreover, a necessary and sufficient condition is obtained when lower and upper 

approximations andP P
r

r  in a generalized approximation space ,U r  satisfy the notion 
of duality with respect to the quasi-complementation.

5.1    A g-approximation space (U, ρg) and inter-relations between ρg and ρ

The notion of quasi-complementation has been discussed above. Proposition 5 below 
describes some of its properties.

Proposition 5. [34] Let g : U → U be an involution, i.e., g(g(u)) = u, for all u Î U. The 
following results hold.

1.	 g is a bijective mapping on U.
2.	 g(g(P)) = P, for all P Í U.
3.	 g(P È Q) = g(P) È g(Q), for all P, Q Í U.
4.	 g(P È Q) = g(P) n g(Q), for all P, Q Í U.
5.	 P = g(P)c = g(Pc), for all P Í U.
6.	 ¬ ¬P = P, for all P Í U.
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7.	 ¬  (P È Q) = ¬  P È ¬  Q, for all P, Q Í U.
8.	 ¬  (P È Q) = ¬  P Ç ¬  Q, for all P, Q Í U.

As our primary aim is to achieve a pair of lower-upper approximations so that they 
are dual approximations with respect to the quasi-complementation, we have defined a new 
approximation space [43,44] in the following way.

Let ,U r  be a generalised approximation space and g : U → U be an involution. A 
binary relation ρg on U is defined as follows:

		  for any two elements u and v in U, uρgv if and only if g(u)ρg(v).	 (1) 

We call , gU r  a g-generalized approximation space or simply, a g-approximation 
space.

As g is an involution on U, ρ can be redefined with respect to ρg as follows:

		  for any two elements u and v in U, uρv if and only if g(u)ρgg(v).	 (2) 

As proofs of the following propositions are available in [44], we only state them here.

Proposition 6.   The following statements are equivalent in a g-approximation space 
, gU r .

1.	 ρg = ρ.
1.	 uρv implies g(u)ρg(v), ∀u, v Î U.
2.	 g(u)ρg(v) implies uρv, ∀u, v Î U.
3.	 uρgv implies g(u)ρgg(v), ∀u, v Î U.
4.	 g(u)ρgg(v) implies uρgv, ∀u, v Î U.
2.	 ρ Í ρg.
3.	 ρg Í ρ.

Let ρu = {v Î U : uρv} and ρg
u = {v Î U : uρgv}. As g is an involution, it is obvious that 

ρg(g(u)) = ρu and ρg
g(g(u)) = ρg

u, for all u Î U. But, there is no subset inclusion relation amongst 
ρu, ρg(u), ρ

g
u and ρg

g(u) in general. However, the following results show how they are related 
depending upon ρ and g.

Proposition 7.   The following statements are equivalent in a g-approximation space 
, gU r .
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1.	 ρg
u = ρg

g(u) (ru = rg(u)), ∀u Î U.
2.	 uρgv (uρv) implies g(u)ρgv (g(u)ρv), ∀u, v Î U.
3.	 g(u)ρgv (g(u)ρv) implies uρgv (uρv), ∀u, v Î U.
4.	 ρg

u Í ρg
g(u) (ru Í rg(u)), ∀u Î U.

5.	 ρg
g(u) Í ρg

u (rg(u) Í ru), ∀u Î U.
6.	 ru = rg(u) (ρ

g
u = ρg

g(u)), ∀u Î U.

Proposition 8. In a g-approximation space , gU r , ρu = g(ρg
g(u)) and ρg

u = g(ρg(u)), 
∀u Î U.

Proposition 9. [44] In a g-approximation space , gU r  the following results hold.

1.	 ρg is reflexive if and only if ρ is reflexive.
2.	 ρg is symmetric if and only if ρ is symmetric.
3.	 ρg is transitive if and only if ρ is transitive.
4.	 ρg is serial if and only if ρ is serial.

From the above proposition it follows that ρg is an equivalence relation on U if and only 
if ρ is so.

Proposition 10. If ρg (ρ) is reflexive and transitive and ρg
u = ρg

g(u)  (ρu = ρg(u)), ∀u Î U 
then ρg = ρ.

Remark 4.

1.	 The reflexivity and transitivity of ρg(ρ) in the above proposition are necessary. If 
we drop any one of them then ρg and ρ may not be equal. Example 7 is considered 
to show it.

2.	 Example 8 shows that the converse of the above result is not true even for an 
equivalence relation ρg.

Example 7. Let U = {a1, a2, a3, a4, a5, a6} and g : U → U be an involution defined by 
g(a1) = a4, g(a2) = a6, g(a3) = a3, g(a4) = a4, g(a5) = a5, g(a6) = a2.

Let ρ = {(a1, a1), (a2, a2), (a3, a3), (a4, a4), (a5, a5), (a6, a6), (a1, a4), (a4, a1), (a2, a6), (a6, 
a2), (a3, a5), (a5, a2)} and σ = {(a3, a3), (a5, a5), (a3, a1)}. Then ρg = {(a1, a1), (a2, a2), (a3, a3), 
(a4, a4), (a5, a5), (a6, a6), (a1, a4), (a4, a1), (a2, a6), (a6, a2), (a3, a5), (a5, a6)} is reflexive but not 
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transitive and σg = {(a3, a3), (a5, a5), (a3, a4)} is transitive but not reflexive. Here, ρg
u = ρg

g(u)   
and sg

u = sg
g(u), for all u Î U but ρg ¹ ρ and σg ¹ σ.

Example 8. U and g are the same as stated in Example 7.

Let ρ = {(a1, a1), (a2, a2), (a3, a3), (a4, a4), (a5, a5), (a6, a6), (a1, a4), (a4, a1)}. Then, ρg = 
ρ and ρg is an equivalence relation on U but { } { } ( ) { }

2 2
2 2 6: .g g g

a g au U a R u a ar = ∈ = ≠ r =

The quasi-complementation and set theoretic complementation of a set P, i.e., ¬P = 
g(P)c and Pc are not the same even when ρ is an equivalence relation, ρ = ρg and ρu = ρg(u), for 
all u Î U. The following example establishes this.

Example 9. The same U and g as mentioned in Example 7 have been considered for this 
case also.

Let ρ = {(a1, a1), (a2, a2), (a3, a3), (a4, a4), (a5, a5), (a6, a6), (a1, a4), (a4, a1), (a2, a6), (a6, 
a2)}. Then, ρg = ρ, ρg is an equivalence relation on U and ρu = ρg(u), for all u Î U. Let P = {a1, 
a2, a4}. Then, P = g(P)c = {a2, a3, a5} ¹ Pc = {a3, a5, a6}.

5.2    g-lower and g-upper approximations in a g-approximation space and rough set 
	 models of some algebras

In this subsection a pair of lower-upper approximations in the g-approximation space , gU r  
will be discussed. These lower-upper approximations are dual with respect to the quasi-
complementation. Their properties and rough set models of some of the algebras stated in 
Section 2 will be presented.

Let , gU r  be a g-approximation space and P be any subset of U. ,gP  the g-lower 

approximation of P and ,
g

P  the g-upper approximation of P, in the g-approximation space 
, gU r , are defined by:

			   { }: g
g uP u U p P= ∈ ⊆

and

			   ( ) ( ){ }: 0
g g

g uP u U p g P= ∈ ∩ ≠ /
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Now, we present some propositions and theorems without their proofs. All of these are 
available in [44]. Proofs of new results, of course, are included.

Proposition 11. 
g

gP and P  are dual approximations with respect to the quasi-
complementation  defined through g.

Proposition 12. 
g

gP and P  are respectively Pawlakian lower approximation of P in 

, gU r  and Pawlakian upper approximation of P in ,U r .

Remark 5. It is noticeable from Example 13 that and ,
gg

gP P P P
r

r≠ ≠  even when ρ 

is an equivalence relation on U. Hence, for a subset P of U, ,
g

gP P  is different from 

,P P
r

r  and , .
g

gP P
r

r  In fact, gP  is Pawlakian lower approximation of P in , gU r  

and 
g

P   is Pawlakian upper approximation of P in ,U r .

Note 4. In Proposition 12 we see that .
g

P P
r

=  On the other hand, one may define gP  

as Pawlakian lower approximation of P in ,U r , i.e., .gP Pr=  Then 
g

P  (considering dual 
with respect to the quasi-complementation ¬) must be Pawlakian upper approximation of P in 

, i.e., .
gg

P P
r

=

It has been mentioned earlier that gP  and 
g

P  are dual approximations with respect to 

the quasi-complementation. But andP P
r

r  are not so. In fact, they are dual with respect to 
set theoretic complementation. We have established here a necessary and sufficient condition 
for a given involution g on U, andP P

r
r  dual approximations with respect to be quasi-

complementation defined through g.

Theorem 20. Let ,U r  be a generalised approximation space and g be an involution 

on U. Then for any P Í U, andP P
r

r and andP P
r

r  are dual approximations with respect to quasi-
complementation defined through g if and only if ρ = ρg.

Remark 6. It is to be noted from Example 9 that the quasi-complementation and 
complementation of a set P i.e., ¬P and Pc are not the same even when ρ = ρg. If they were the 
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same, the above theorem would not have any significance at all. When ρ = ρg, gP Pr=  and 

.
g

P P
r

=  Hence all the properties of lower/upper approximations with respect to ρ as well as 
ρg coincide. Yet there remains one significant point. The complementation and quasi- 
complementation do not coincide yet the approximation operators are dual with respect to 
both of them.

However, when , , , and , , ,
g

g
g gg

g gP P P P P P P P
r r

r rr ≠ r ≠ ≠  still the 

following results hold.

Proposition 13. In a g-approximation space , gU r , the following results hold.

1.	 0 0.
g

gU U and= / = /

2.	 If P Í Q Í U then .
g g

g g
P Q and P Q⊆ ⊆

3.	 ,
g g g

gg g
P Q P Q and P Q P Q∩ = ∩ ∪ = ∪  for all P, Q Í U.

The counterpart of the modal axiom K in the form ( )g gg
P Q P Q¬ ∪ ⊆ ¬ ∪    does not 

hold in general. The following example shows this.

Example 10. The same U and g in Example 7 are considered for this example. Let ρ = 
{(a1, a1), (a1, a4), (a4, a1), (a3, a6)}. Then, ρg = {(a4, a4), (a4, a1), (a1, a4), (a3, a2)}. Let P =  {a2, 
a3, a4} and Q = {a5, a6}. Then, g

p Q¬ ∪  =  {a1, a2, a3, a5, a6} and ( )g g
P Q¬ ∪  = {a1, 

a2, a5, a6}. Thus, ( ) .g gg
P Q P Q¬ ∪ ⊆ ¬ ∪

Proposition 14. A sufficient condition so that ( )g gg
P Q P Q¬ ∪ ⊆ ¬ ∪  holds for all P, 

Q Í U is that ρ = rg.

Proof. Let u Î g
P Q¬ ∪ . Then, rg

u Í g(P)c È Q. Two possible cases are:

1.	 u Í g ( )gP

2.	 u Ï g ( )gP
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For the second case, it is obvious that ( )( )c
gu g P∈  and hence ( ) .g g

u P Q∈¬ ∪  For 

the first case, u = g(v) where v Î .gP  Then, ρg
v Í P and hence g(ρg

v) Í g(P). Then by 

Proposition 8, ρu Í g(P) [as u = g(v)]. Since ρ = ρg, so, ρu = ρg
u and therefore ρg

u Í g(P). This 
gives, ρg

u Ç g(P)c = 0./  As ρg
u Í g(P)c È Q so, ρg

u Í Q and therefore u Î g
Q Í ( ) .g g

u P Q∈¬ ∪

Hence the result follows.

Remark 7.

1.  	 When ρ = ρg, and
g

gP P  become andP P
r

r  respectively. Then 

( )g gg
P Q P Q¬ ∪ ⊆ ¬ ∪  turns into ( ) ,P Q P Qr rr

¬ ∪ ⊆ ¬ ∪  not identical 

with ( )ccP Q P Qrr r
∪ ⊆ ∪  (the counterpart of the modal axiom K in 

Boolean base)
2. 	 Whether ρ  =  ρg is a necessary condition or not for holding 

( )g gg
P Q P Q¬ ∪ ⊆ ¬ ∪  is unsolved.

The following example shows that the counterpart of the modal axiom D: 
g

gP P⊆  
does not hold for a serial relation ρg.

Example 11. U and g are the same as stated in Example 7. Let ρ = {(a1, a2), (a2, a1), (a3, 
a1), (a4, a6), (a5, a5), (a6, a2)} be a serial relation on U. Then, ρg = {(a4, a6), (a6, a4), (a3, a4), 
(a1, a2), (a5, a5), (a2, a6)} is a serial relation. Let P =  {a2, a4, a5}. Then, .gP  = {a1, a3, a5, a6} 
and 

g
P  = {a1, a5, a6}. Thus, .

g
gP P⊆

Theorem 21. In a g-approximation space , gU r , .gP  Í g
P  holds for all P ÍU if and 

only if 0,g
u ur ∩ r ≠ /  for all u Î U.

Proof. Let us assume that .gP  Í 
g

P  holds for all P Í U. Let u Î U. Then, particularly, 
g g
u ug

r ⊆ r  holds. This gives, u Î {v Î U : ρv Ç ρg
u = 0./ } [as u Î g g

u ug
r ⊆ r and by Proposition 12] 

and hence ρg
u  Ç ρu ¹ 0./

Conversely, let 0,g
u ur ∩ r ≠ /  for all u Î U. Let u Î .gP . This implies ρg

u Í P and hence 
ρg

u Ç ρu Í ρu Ç P. This gives, ρu Ç P ¹ 0./  [as ρg
u Ç ρu ¹ 0./ ]. Hence, u Î g

P .
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Remark 8. 0,g
u ur ∩ r ≠ /  for all u Î U, implies that ρg(ρ) is a serial relation on U. But the 

converse is not true, i.e., there exists a serial relation ρg(ρ) so that 0,g
u ur ∩ r ≠ /  for some u Î 

U. In Example 11, { } { }
22 6 1and .g

aa a ar = r =  So, 
22

0.g
aar ∩ r = /  Thus, the condition in 

Theorem 21 is stronger than a serial relation. By the following Example 12, it is further noted 
that 0,g

u ur ∩ r ≠ /  for all u Î U does not imply ρ = ρg.

Example 12. U and g are the same as stated in Example 7.

Let ρ = {(a1, a2), (a2, a3), (a2, a4), (a3, a3), (a4, a6), (a5, a5), (a6, a3)} be a serial relation 
on U. Then,

ρg = {(a4, a6), (a6, a3), (a6, a1), (a3, a3), (a1, a2), (a5, a5), (a2, a3)} is a serial relation on U. 
Now, ρa1

= {a2}, ρa2
 = {a3, a4}, ρa3 = {a3}, ρa4

 = {a6}, ρa5
 =  {a5}, ρa6

 = {a3} and ρg
a1

 = {a2}, 
ρg

a2
 = {a3}, ρg

a3
 = {a3}, ρg

a4
 = {a6}, ρg

a5
 = {a5}, ρg

a6
 = {a1, a3}. Thus, ρg

u Ç ρu ¹ 0, for all u Î 
U but ρ ¹ ρg .

Proposition 15. If ρg is reflexive in a g-approximation space , gU r , the following 
results hold.

1.	 0 0.
g

gU U and= / = /

2.	 .gP  Í P Í g
P , for all P Í U.

It is known to us that Pawlakian lower-upper approximations andP P
r

r  satisfy the 

counterpart of the modal axiom B: ( ) ,P P
r

r ⊆  for all P Í U, when ρ is a symmetric relation 

on U. But, ( )
g

gP P⊆  does not hold even for an equivalence relation ρg on U (see Example 
13). A necessary and sufficient condition is presented in Theorem 22 below so that the 
counterpart of the modal axiom B holds.

Theorem 22. Let ρg be a symmetric relation in a g-approximation space , gU r . Then 
for any subset P of U, ( )

g

gP P⊆  holds if and only if ρg = ρ.

Proof. Let ρg = R. Then, , ,
g

gP P P P
r

r=  and consequently for any subset P of U, 

( )
g

gP P⊆  holds as ρ is symmetric relation on U. Conversely, let us assume that ( )
g

gP P⊆  



292	 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

Journal of Combinatorics, Information & System Sciences

holds, for any subset P of U. We shall show that ρ Í ρg. If ρ = 0./  then ρg = 0./  and hence the 

result follows. Let uρv. Let P = ρg
v. Then, ( )

g
g g
v vg

p p⊆  i.e., { }: 0 .g g
z v vg

z U p∈ ∩ r ≠ / ⊆ r  

Now, { }: .g w g
v g vg

w Ur = ∈ r ⊆ r  This gives, v Î .g
v g

r  As uρv so v Î ρu and hence ρu Ç .g
v g

r   

¹ 0./ . Then from definition of ( ) ,
g

g
v g

r  u Î ( ) .
g

g
v g

r  As ( ) ,
g

g
v g

r  Í ρg
v so u Î ρg

v. This gives, 

uρgv as ρg is symmetric. Thus, ρ Í ρg. Using Remark 6, ρg = ρ.

Remark 9. By the above theorem it is clear that the counterpart of modal axiom B is 
possible with respect to g-lower and g-upper approximations only when ρg = ρ. Indeed, in 
that case, g-lower and g-upper approximations are the same with Pawlakian lower and upper 
approximations in the approximation space ,U r . But one gain, in this case, is that .gP  and 

g
P , i.e., andP P

r
r  are dual approximations with respect to the quasi-complementation. 

From Example 9, it is further noted that complementation and quasi-complementation are not 
the same even when ρ is an equivalence relation.

Proposition 16. If ρg is transitive in a g-approximation space , gU r  then for any 

subset P of U, ( ) ( )
g

g g
g g

g
P P and P P⊆ ⊆  hold.

The following example is considered to show that ( )
g

g gP P⊆  may not hold even for 

an equivalence relation ρg in a g-approximation space , gU r .

Example 13. U and g are the same as mentioned in Example 7. Let ρ be an equivalence 
relation on U which partitions the set U into the subsets {a2, a3}, {a4}, {a1, a5}, {a6} of U. 
Then, the equivalence relation ρg partitions the set U into the subsets {a3, a6}, {a1}, {a4, a5}, 

{a2} of U. Let P = {a1, a3, a6}. Then, .gP  = {a1, a3, a6} and ( )
g

gP  = {a1, a2, a3, a5, a6} and 

therefore ( )
g

gP  Ë .gP  = P. Further, we see that .gP  = {a1, a3, a6} ¹ Pr  = {a6} and g
P  = 

{a1, a2, a3, a5, a6} ¹ 
g

P
r  =  {a1, a3, a6}. It is also noticeable that andP P

r
r  are not dual 

approximations with respect to the quasi-complementation as ( )P
r

¬  = {a1, a5, a6} ¹ ( )P
r

¬  

= {a1} and ( )P
r

¬  = {a1, a5, a6} ¹ ( )Pr¬  = {a1, a3, a4, a5, a6}.
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Theorem 23. Let ρg be an equivalence relation in a g-approximation space , gU r . 

Then for any subset P of U, ( )
g

gP  Í .gP  holds if and only if rg = r.

The following example establishes that ( )g gP P¬ ∪  = U may not hold even for an 
equivalence relation ρg with ρg = ρ.

Example 14. U, g and ρ are the same as stated in Example 8. Let P =  {a1, a2, a3}. Then 
.gP   = {a2, a3} and hence ( )g gP P¬ ∪  = {a1, a2, a3, a4, a5} ¹ U.

We now state a necessary and sufficient condition so that ( )g gP P¬ ∪   = U, ∀P Í U, 
holds.

Theorem 24. Let ρg(ρ) be an arbitrary relation in a g-approximation space , gU r  

(generalized approximation space ,U r ). Then for any subset P of U, ( )g gP P¬ ∪  = 

( )( )U P P Ur r¬ ∪ =  holds if and only if ( ) ( )( ) ,g g
u u g ug ur = r r = r  for all u Î U.

Proof. Let ρg
u = ρg

g(u), for all u Î U. Let P be any subset of U and v be any element of U. 
If v Î ¬  ( .gP ), the result follows. So, let v Ï ¬  ( .gP ) = U — {g(u) : ρg

u Í P}. This gives, v Î 

{g(u) : ρg
u Í P}. Then, v = g(t) where ρg

t Í P. As ρg
t  = ρg

g(t) [by the hypothesis], so ρg
g(t) Í P 

and hence g(t) = v Î .gP . Thus ( )g gP P¬ ∪   = U, for any subset of P of U. Conversely, let 

( )g gP P¬ ∪   = U, for any subset P of U. Let u Î U. It is to be shown that ρg
u = ρg

g(u). Let P 

= ρg
g(u). Then, .gP  = {v : ρg

v Í ρg
g(u)}. We now claim that u Î .gP . If not, u Î ( .gP ) as 

( )g gP P¬ ∪   = U. Then, u Ï {g(v) : ρg
v Í ρg

g(u)}. As g is bijective on U, let u = g(z). Then, ρg
z 

Ë ρg
g(u), i.e., ρg

g(u) Ë ρg
g(u) [z = g(u) follows from u = g(z) as g is an involution], which is a 

contradiction. Thus, u Î .gP  = {v : ρg
v Í ρg

g(u)} and hence ρg
u Í ρg

g(u).

Using Remark 7, ρg
u = ρg

g(u).

Similarly, the other part can be proved.

By Remark 7, ρg
u = ρg

g(u) if and only if ρu = ρg(u). So, the above Theorem 24 holds good 
for any one of the conditions ρg

u = ρg
g(u) and ρu = ρg(u).
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It has been mentioned earlier that for any relation ρ, g
P P

r
=  holds. As there is no fixed 

subset inclusion relation between and gP Pr    until ρ = ρg, the four possible cases (when 

gP Pr ≠ ) that may occur are presented in Example 17 on page 301-302.

In order to view the important results of this section at a glance we refer to Table 4.

Rough set models for stqBa, stqBaD, stqBaT, stqBaB, tqBa, tqBa5 and IA1:

For a non empty set U, by Proposition 5, 2 , , , , 0,U U∩ ∪ ¬ /  is a qBa, where 2U is the 
power set of U, g is an involution on U and ¬P = g(P)c .

Rough Set model for a stqBa: Let , gU r  be a g-approximation space. Then, 

2 , , , , 0,U U∩ ∪ ¬ /  is a qBa, where ¬P = g(P)c, for all P Î 2U. We now define I P, for all 

P Í U as IP = .gP . Then by Proposition 5 and Proposition 13, 2 , , , , , 0,U I U∩ ∪ ¬ /  is a 
stqBa.

Remark 10. The above model of stqBa is also a model for System0 algebra.

Rough Set model for a stqBaD: Let ρg be a relation on U so that ρg
t Ç ρu ¹ 0./ , for all u 

Î U. Then, by Proposition 5, Proposition 13 and Theorem 21, 2 , , , , , 0,U I U∩ ∪ ¬ /  is a 
stqBaD.

Rough Set model for a stqBaT: For a reflexive relation ρg on U, by Proposition 5, 
Proposition 13 and Proposition 15, 2 , , , , , 0,U I U∩ ∪ ¬ /  is a stqBaT.

Rough Set model for a stqBaB: For a reflexive and symmetric relation ρg on U with ρg 
= ρ, by Proposition 5, Proposition 13, Proposition 15 and Theorem 22, 2 , , , , , 0,U I U∩ ∪ ¬ /  
is a stqBaB.

Remark 11. By Proposition 14, the algebraic counterpart of the modal axiom K also 
holds in the above model of stqBaB as ρg = ρ. Thus, the above model is also a rough set model 
for stqBaB with modal axiom K (quasi-Boolean base).

Rough Set model for a tqBa: For any reflexive and transitive relation ρg on U, by 
Proposition 5, Proposition 13, Proposition 15 and Proposition 16, 2 , , , , , 0,U I U∩ ∪ ¬ /  is 
a tqBa.
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Rough Set model for a tqBa5: For any equivalence relation ρg on U with ρg = ρ, by 
Proposition 5, Propositions 13, Proposition 15, Proposition 16 and Theorem 23, 

2 , , , , , , 0,U I C U∩ ∪ ¬ /  is a tqBa5, where I P = gP Pr=   and C P = .
g

P P
r

=

Remark 12. By Proposition 14, the algebraic counterpart of the modal axiom K also 
holds in the above model of tqBa5 as ρg = ρ. Thus, it is also a rough set model of tqBa5 with 
modal axiom K.

Rough Set model for a IA1: For any equivalence relation ρg on U with ρg
u = ρg

g(u), for 
all u Î U, by Proposition 5, Proposition 10, Propositions 13, Proposition 15, Proposition 16, 
Theorem 23 and Theorem 24, 2 , , , , , , 0,U I C U∩ ∪ ¬ /  is a IA1, where  I P = P P   
and C P = .

g
P P

r
=

Remark 13. It has been shown in [43] that the algebraic counterpart of the modal axiom 
K holds in a IA1. In the above model of IA1, it also holds (by Proposition 10 and Proposition 
14).

Table 4: Some results on the two lower-upper approximations

Nature of r Result
ρ is arbitrary but ρ ¹ ρg

(1) .gP  and 
g

P  are dual with respect to the 
quasi-complementation.

(2) .
g

P P
r

=

(3) ( )g gg
P Q P Q¬ ∪ ⊆ ¬ ∪

(4) andP P
r

r  are not dual with respect to 
the quasi-complementation.

ρ is arbitrary but ρ = ρg
(1) gP Pr=

(2) .
g

P P
r

=

(3) ( )g gg
P Q P Q¬ ∪ ⊆ ¬ ∪

(4) andP P
r

r  are always dual with respect 
to complementation as well as quasi-
complementation.
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ρ is a serial relation with ρu Ç ρg
u = 0./ , for at 

least one u Î U.
(1) P P

r
r ⊆  holds for all P Í U

(2) 
g

gP P⊆  does not hold for at least one 
P Í U

ρ is a (serial) relation with ρu Ç ρg
u ¹ 0./ , for 

all u Î U.
(1) P P

r
r ⊆  holds for all P Í U

(2) 
g

gP P⊆  holds for all P Í U

ρ is reflexive but ρ ¹ ρg

(1) .
g

gP P P P
r

⊆ ⊆ =

(2) andP P  are not dual with respect to 
the quasi-complementation.
(3) Pr  Í P but there is no fixed subset 
inclusion relation between Pr  and .gP . See 
Table 5 and Figure 7.

ρ is reflexive and ρ = ρg

(1) .
g

gP P P P P
r

r= ⊆ ⊆ =

(2) andP P
r

r  are always dual with respect 
to complementation as well as quasi-
complementation.

ρ is symmetric but ρ ¹ ρg

(1) ( )P
r

r  Í P

(2) ( )
g

gP  ⊆  P

ρ is symmetric and ρ = ρg

(1) ( )
g

gP  Í P
ρ is transitive

(1) ( ) ( )andP P P P
r

r r
r r

r
⊆ ⊆

(2) ( ) ( )and
g

g g
g g

g
P P P P⊆ ⊆
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ρ is equivalence but ρ ¹ ρg

(1) ( )P
r

r  Í .Pr

(2) ( )
g

gP  ⊆  .gP

ρ is equivalence and ρ = ρg

(1) ( )
g

gP  Í .gP

ρ is any relation with ρu = ρg(u) (1) ( )P P Ur r¬ ∪ =

(2) ( )g gP P U¬ ∪ =

5.3    Rough set models of some Implicative Topological quasi-Boolean algebras

In section 2 we have presented a number of Implicative Topological quasi-Boolean algebras 
where implication has been imposed satisfying the property (PÞ). Besides, three intermediate 
properties IP1, IP2 and IP3 are included separately to IqBaO before adding the topological 
properties corresponding to the modal axioms T, S4 and S5. Hence, for a proper set theoretic 
rough set model of the above mentioned algebras two important steps have to be developed. 
First, an investigation for suitable operation that corresponds to Þ is needed. Second, a pair of 
lower-upper approximations has to be constructed so that they are dual approximations with 
respect to the quasi-complementation and satisfies exactly one property of IP1, IP2 and IP3. 
The first has been achieved in two different ways. Boolean implication P Þ Q(º Pc È Q), 
in one way, serves the purpose smoothly. On the other hand, g image of Boolean implication 
g(P Þ Q)(º P Þ1 Q) also fulfils the property (PÞ). Thereafter, a study has been made to find 
some relations between them. For the second issue, a pair of lower-upper approximations, 
dual with respect to the quasi-complementation, has been constructed that fulfills the property 
IP1. Using the pair, rough set models for the chain of algebras IqBa1, IqBa1,T, IqBa1,4 and 
IqBa1,5 have been developed in [44].

Rough set models for IqBaO, IqBaT, IqBa4 and IqBa5

Rough Set model for IqBaO: Let , gU r  be a g-approximation space. Now, 

2 , , , , 0,U U∩ ∪ ¬ /  is a qBa, where ¬P = g(P)c, for all P Î 2U. We define Þ in 2U as 
follows

			   P Þ Q = Pc È Q, for all P, Q Î 2U.
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Then, it is obvious that P Þ Q = U if and only if P Í Q and consequently 
2 , , , , , 0,U U∩ ∪ ⇒ ¬ /  becomes a IqBa. We now define IP, for all P Í U as IP = .gP . Then 

by Proposition 11 and Proposition 13, 2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  is a IqBaO.

Remark 14. Defining ,
gg

gP P P P
r

r= =  (by Note 4) it can be shown that 

12 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  becomes a different model for IqBaO with respect to I1 where 
I1P = Pr .

Rough Set model for IqBaT: For any reflexive relation ρg on U, by Proposition 11, 
Proposition 13 and Proposition 15, 2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ / is a IqBaT.

Similarly as Remark 14, for any reflexive relation ρg, 12 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  
becomes a different model for IqBaT with respect to I1 where I1P = Pr .

Rough Set model for IqBa4: For any reflexive and transitive relation ρg on U, by 
Proposition 11, Proposition 13, Proposition 15 and Proposition 16, 2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  
is a IqBa4.

Similarly as Remark 14, for any reflexive and transitive relation ρg, 
12 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  becomes a different model for IqBa4 with respect to I1 where 

I1P = Pr .

Rough Set model for IqBa5: For any equivalence relation ρg on U with ρg = ρ, by 
Proposition 11, Propositions 13, Proposition 15, Proposition 16 and Theorem 23, 

2 , , , , , , , 0,U I C U∩ ∪ ⇒ ¬ /  is a IqBa5 where I P = gP Pr=   and C P = .
g

P P
r

=

Note 5. As for any equivalence relation ρg on U with ρg = ρ, I1P = Pr  = .gP  = IP and 

therefore the models 2 , , , , , , , 0,U I C U∩ ∪ ⇒ ¬ /  and 12 , , , , , , , 0,U I C U∩ ∪ ⇒ ¬ /  
are the same for IqBa5.

On the implications Þ and Þ1

We shall discuss about the implications Þ and Þ1. Some results on these two implications 
will be presented below.
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Proposition 17. Let g be an involution on a non-empty set U and P Þ1 Q = g(P Þ Q), 
where P Þ Q = Pc È Q, for all P, Q Î 2U. Then P Þ1 Q = ¬P È g(Q), for all P, Q Î 2U.

Proof.

	 P Þ1 Q = g(P Þ Q) 
		     = g(Pc È Q)
		     = g(Pc) È g(Q) [by Proposition 5] 
		     = ¬P È g(Q) [by the definition of ¬]

Proposition 18. P Þ1 Q = U if and only if P Í Q.

Proof.

	 P Þ1 Q = U Û g(P Þ Q) = U
		             Û g(P Þ Q) = g(U) [as g(U) = U]
		             Û P Þ Q = U [by Proposition 5]
		             Û P Í Q [by the property of Boolean implication]

Remark 15. From Proposition 18, it is clear that if P Í Q then P Þ Q and P Þ1 Q are the 
same and equal to U. But, when P ⊆  Q then P Þ Q and P Þ1 Q may not be the same. 
Example 15 is an instant for this.

Example 15. U and g are the same as stated in Example 7. Let P = {a1, a2, a3} and Q = 
{a2, a4, a5}. Then P Þ Q = Pc È Q = {a2, a4, a5, a6} ¹ P Þ1 Q = g(P Þ Q) = {a1, a2, a5, a6}.

Proposition 19. Let g be an involution on a non empty set U. Then 

			   {P Þ Q : P, Q Î U} = {P Þ1 Q : P, Q Î U}.

Proof: Let P Þ Q Î {P Þ Q : P, Q Î U}. Then,

		  P Þ Q = Pc È Q

		               = g(g(P))c È g(g(Q)) [by Proposition 5]

		               = g(P) Þ1 g(Q) Í {P Þ1 Q : P, Q Î U} 		
					     [by Proposition 17 on page 299]

Thus, {P Þ Q : P, Q Î U} Í {P Þ1 Q : P, Q Î U}.
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Similarly, it can be shown that {P Þ1 Q : P, Q Î U} = {P Þ Q : P, Q Î U} and hence 
{P Þ Q : P, Q Î U} = {P Þ1 Q : P, Q Î U}.

If we define implication as P Þ1 Q = g(P Þ Q), for all P, Q Î 2U then 

12 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  and 1 12 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  become different models 
for IqBaO/IqBaT /IqBa4/IqBa5 with respect to the implication Þ1 as shown in Example 16.

Example 16. Let U = {a1, a2} and g be an involution on U such that g(a1) = a2 and g(a2) 
= a1. Let ρ be any binary relation on U. Then, by Proposition 11, Proposition 13 and Proposition 
18, 2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  and 12 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  are two models of IqBaO. 
Now, the implications Þ and Þ1 on P(U) act as follows:

Þ	 0./ 	 {1} 	 {2}	 U	 Þ1	 0./ 	 {a1} 	{a2}	 U

0./ 	 U   	 U   	 U 	 U	 0./ 	 U   	 U   	 U 	 U

{a1}	 {a2}	 U 	 {a2} 	 U	 {a1}	 {a1}	 U 	{a1} 	 U

{a2}	 {a1}	 {a1}	 U 	 U	 {a2}	 {a2}	 {a2}	 U 	 U

U	 0./ 	 {a1}	 {a2}	 U	 U	 0./ 	 {a2}	 {a1}	 U

As {a1} Þ {a2} ¹ {a1} Þ1 {a2}, the above two models of IqBaO are different with 
respect to Þ and Þ1.

Similarly, it can be shown that 12 , , , , , , 0,U I I U∩ ∪ ⇒ ¬ /  and 

1 12 , , , , , , 0,U I I U∩ ∪ ⇒ ¬ /  are two different models of IqBaT//IqBa4/IqBa5 with 
respect to Þ and Þ1.

Rough set models for IqBa1, IqBa1,T, IqBa1,4 and IqBa1,5: a new pair of approximations

It is observed from Example 14 that ¬  ( .gP ) È .gP  ¹ U where P = {a1, a2, a3}, ρg is an 

equivalence relation on U with ρg = ρ. Thus gP  and g
P  do not fit with IP1. We have defined 

in [44] a new pair of lower and upper approximations so that it fulfils IP1. Rough set models 
for IqBa1, IqBa1,T, IqBa1,4 and IqBa1,5 have been constructed using these lower-upper 
approximations.

Let , gU r  be a g-approximation space and P be any subset of U. ,1,gP  the g, 1-lower 
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approximation of P and 
, 1

,
g

P  the g, 1-upper approximation of P, in the g-approximation 
space , gU r , are defined by:

			   { } ( ){ }, 1 : :g g
g u g uP u U P u U P= ∈ r ⊆ ∩ ∈ r ⊆

and

	 ( ) ( ){ } ( ){ }, 1
: 0 : 0 .

g g g
ug up u U g P u U g P= ∈ r ∩ ≠ / ∪ ∈ r ∩ ≠ /

The following results are available in [44]. Without proofs they are presented below.

Proposition 20. ,1,gP  and , 1
,

g
P  are dual approximations with respect to the quasi-

complementation ¬.

Proposition 21. ,1,gP  and , 1
,

g
P  are respectively ( ) ( ).

g g
g gP g P and P g P∩ ∪

Remark 16. For an arbitrary relation rg, it follows from Proposition 21 and Proposition 

12 that  ,1,gP  Í .gP  and 
, 1

,
g g

P P P
r

= ⊆  for all P Í U.

Proposition 22. If ρg
u = ρg

g(u), for all u Î U in a g-approximation space , gU r  then 

,1,gP  = .gP  and , 1
,

g
P  = .

g
P P

r
= for all P Í U.

In the following example we have shown how the three pairs , , ,
g

gP P P P
r

r  and 

, 1

, 1,
g

gP P  of a particular set look like when ρ is an equivalence relation, ρ ¹ ρg and ρu ¹ 

ρg(u), for at least one u Î U.

Example 17. U , g and ρ are the same as stated in Example 7. The possible situations 
are presented in Table 5.
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Table 5:   Three lower-upper approximations of a particular set

Case (i) Case (ii) Case (iii) Case (iv)
P {a2, a4} {a1, a2, a5} {a1, a3, a5} {a1, a3, a6}

,P P
r

r
{a4}, {a2, a3, a4} {a1, a5},

{a1, a2, a3, a5}
{a1, a5},
{a1, a2, a3, a5}

{a6},
{a1, a2, a3, a5, a6}

,
g

gP P {a2}, {a2, a3, a4} {a1, a2},
{a1, a2, a3, a5}

{a1}, 
{a1, a2, a3, a5}

{a1, a3, a6}
{a1, a2, a3, a5, a6}

, 1

, 1,
g

gP P 0./ ,
{a1, a2, a3, a4, a6}

0./ , U 0./ , U {a3}, U

Remark Pr  and .gP  have 
no common 
intersection

Pr  and .gP  have 
a non-void  
intersection.

.gP  is a proper 

subset of Pr  

Pr  is a proper 

subset of .gP

It has been stated earlier that for any relation ρ, ,1,gP  Í .gP  and 
, 1

,
g g

P P P
r

= ⊆  hold. 

As there is no fixed subset inclusion relation between Pr  and .gP  until ρ = ρg, the four 

circumstances that we have shown in Table 5 are the only possible cases when Pr  ¹ .gP . A 
Pictorial representation of these four situations are shown in more general way in Figure 7.

Proposition 23. In a g-approximation space , gU r , the following results hold.

1.	
, 1

, 1 0 0.
g

gU U and= / = /

2.	 If P Í Q Í U then ,1,gP  Í 
, 1g

Q  and , 1
,

g
P  Í 

, 1
.

g
Q

3.	
, 1g

P Q∩ =  ,1,gP  Ç 
, 1g

Q  and 
, 1g

P Q∪  = , 1
,

g
P  Í 

, 1
.

g
Q , for all P, Q Í U.

4.	 ¬ ( ), 1gP  È ,1,gP , for all P Í U.

Proposition 24. If ρg is reflexive in a g-approximation space , gU r , the following 
results hold.

1.	
, 1

, 10 0.
g

gU U and= / = /

2.	 ,1,gP  Í P Í , 1
,

g
P , for all P Í U.
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If ρg is transitive, even an equivalence relation, then ( ), 1 , 1
, 1

g g
g

P P⊆  may not hold. The 
example given below is one such.

Example 18. U and g are the same as stated in Example 7. Let ρ = {(a1, a1), (a2, a2), (a3, 
a3), (a4, a4), (a5, a5), (a6, a6), (a1, a2), (a2, a1)}. Then, ρg = {(a1, a1),(a2, a2), (a3, a3), (a4, a4), 
(a5, a5), (a6, a6), (a4, a6), (a6, a4)} is an equivalence relation on U. Let P = {a1, a4, a6}. Then, 

,1,gP  = {a1, a4} but ( ), 1 , 1
, 1

g g
g

P P⊆   = 0./ .

Proposition 25. If ρg is transitive and ρg
u = ρg

g(u), for all u Î U in a g-approximation 

space , gU r  then for any subset P of U, ,1,gP  Í ( ), 1 , 1
, 1

g g
g

P P⊆  and ( )
, 1

, 1 , 1
g

g g
P P⊆  hold.

Remark 17. The condition as stated in the above proposition is a sufficient condition but 
not necessary. The following example establishes that for any subset P of U,  Í ( ), 1 , 1

, 1
g g

g
P P⊆      

holds where ρg is transitive, even an equivalence relation, but ρg
u ¹ ρg

g(u), for all u Î U.

Example 19. Let U = {a1, a2} and g : U →  U  be an involution defined by g(a1) = a2, 
g(a2) = a1. Let ρ = {(a1, a1), (a2, a2)}. Then ρg = {(a2, a2), (a1, a1)} is an equivalence relation 
on U. Here, ,1,gP  = ( ), 1 , 1

, 1
g g

g
P P⊆ , for all subset P of U but ( ) ( )1 21 2

and .g g g g
a ag a g ar ≠ r r ≠ r

Proposition 26. If ρg is an equivalence relation and ρg
u = ρg

g(u), for u Î U in a 

g-approximation space , gU r  then for any subset P of U,  ( )
,1

,1 ,1.
g

g gP P⊆

The condition as stated in the above proposition is only sufficient. The example given 

below shows that for any subset P of U, ( )
,1

,1 ,1

g

g gP P⊆  holds for an equivalence relation ρg 
where ρg

u = ρg
g(u), for all u Î U.

Example 20. U, g and ρ are the same as stated in Example 19. Here, ( )
,1

,1 ,1

g

g gP P⊆ , for 
all subset P of U but ( ) ( )1 21 2

and .g g g g
a ag a g ar ≠ r r ≠ r

Rough Set model for IqBa1: Let , gU r  be a g-approximation space. By Proposition 

20 and Proposition 23, 2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  is a IqBa1 where ¬P = g(P)c, P Þ Q = 
Pc È Q and I  P = ,1,gP .
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Rough Set model for IqBa1,T: For any reflexive relation ρg on U, by Proposition 20, 
Proposition 23 and Proposition 24, 2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  is a IqBa1,T.

Rough Set model for IqBa1,4: For any reflexive and transitive relation ρg with ρg
u = 

ρg
g(u), for all u Î U, by Proposition 20, Proposition 23, Proposition 24 and Proposition 25, 

2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  is a IqBa1,4 where I P = ,1,gP  = .gP  = Pr   by Proposition 9.

Rough Set model for IqBa1,5: For any equivalence relation ρg on U with ρg
u = ρg

g(u), 
for all u Î U, by Proposition 20, Proposition 23, Proposition 24, Proposition 25 and Proposition 

26, 2 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  is a IqBa1,5 where I  P = ,1,gP  = Pr  and C  P = 
, 1

,
g

P  = P P
r

r ⊆ .

Remark 18. 12 , , , , , , 0,U I U∩ ∪ ⇒ ¬ /  becomes a different model of IqBaO/IqBaT/
IqBa4/IqBa5 with respect to the implication Þ1, where P Þ1 Q = g(P Þ Q) for all P, Q Í U.

In order to view the important results of this section at a glance we refer to Table 6.

Table 6: Some important results on the three lower-upper approximations

Nature of ρ Result
ρ is arbitrary relation

.gP , g
P  and ,1,gP , , 1

,
g

P  are always dual 
approximations with respect to the quasi-
complementation.

ρ is arbitrary, ρ ¹ ρg and ρu = ρg(u), for at 
least one u Î U

(1) ,1,gP  Í .gP .

(2) P P
r

r ⊆  = 
g

P  Í 
, 1

,
g

P .

(3) Pr  and P
r

 are not dual approximations 
with respect to the quasi-complementation.

ρ is reflexive/equivalence, ρ ¹ ρg and ρu ¹ 
ρg(u), for at least one u Î U (1) ,1,gP  Í .gP  Í P Í g

P  = P P
r

r ⊆  Í 
, 1g

P

(2) Pr  and P P
r

r ⊆  are not dual approximations 
with respect to the quasi-complementation.
(3) Pr  Í P but there is no fixed subset 
inclusion relation between  and .gP . See 
Table 5 and Figure 7.
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ρ is reflexive and transitive, ρu = ρg(u) , for all 
u Î U and ρ ¹ ρg

The case is not possible by Proposition 9.

ρ is arbitrary but not reflexive and transitive, 
ρu = ρg(u), for all u Î U and ρ ¹ ρg

(1) ,1,gP  = .gP .

(2) P P⊆  = 
g

P  = 
, 1

,
g

P .

(3) Pr  and P P
r

r ⊆  are not dual approximations 
with respect to the quasi-complementation.

ρ is arbitrary, ρ = ρg and ρu ¹ ρg(u), for at 
least one u Î U

(1) ,1,gP  Í .gP  = Pr

(2) P P
r

r ⊆  = 
g

P  Í 
, 1

,
g

P .
(3) Pr  and P P

r
r ⊆  are dual approximations with 

respect to the quasi-complementation.

ρ is reflexive/equivalence, ρ = ρg and ρu ¹ 
ρg(u), for at least one u Î U (1) ,1,gP  Í .gP  = Pr  Í P Í P P

r
r ⊆  = 

g
P  Í 

, 1
,

g
P

(2) Pr  and P P
r

r ⊆  are dual approximations with 
respect to the quasi-complementation.

ρ is arbitrary, ρ = ρg and ρu = ρg(u), for all u 
Î U

(1) ,1,gP  = .gP  = Pr

(2) P P
r

r ⊆  = 
g

P  = 
, 1

,
g

P
(3) Pr  and P P

r
r ⊆  are dual approximations with 

respect to the quasi-complementation.

6.	C oncluding remarks
We have discussed various abstract algebraic structures emerging out of various kinds of 
rough sets starting from the Pawlakian one. But there has been a number of such algebras 
all coming out of the basic one viz. topological quasi-Boolean algebra. From the angle of 
application these abstract algebras need to have set-models. It has been possible to present 
set-models to some (but not all) of these abstract structures. So this part of the study remains 
incomplete.

Logics corresponding to these algebras have been studied extensively. However, logics 
are of three kinds: first, those in which a formula is evaluated as an element of the algebra 
belonging to a class, second where formulas are interpreted as subsets of a universe endowed 
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Fig. 7: Different possibilities of three lower-upper approximations when ρ is reflexive/
equivalence, ρ ¹ ρg and ρu ¹ ρg(u), for at least one u Î U
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with topological operators on the subsets of it. In the second case, the topological operators 
are interpretation of the modal operators, they represent the lower/upper approximations 
of the sets. A third kind of logic also exists—logics with rough consequence, in which the 
consequence relation has been generalized via generalization of Modus Ponens rule.

Lots of question remain unanswered. Of them a few important ones are the following.

1. 	 In Table 2, there are covering systems whose corresponding logical systems have 
yet not been obtained. Particularly significant will be those in which duality of the 
lower upper approximation does not hold and those which are non-normal in the 
sense that the axiom K does not hold in them. But they are rough set models in 
the sense that approximation operators are available in them defined in terms of 
covering of the universe of discourse.

2. 	 In Section 5, a few rough set models have been constructed from the point of 
relational approach. A new approximation space has been defined in order to 
obtain lower-upper approximations to be dual with respect to quasi-
complementation. A collection of relations {ρ : ρ = ρg} has been identified so that 
Pawlakian lower-upper approximations in these approximation spaces ,U r  are 
dual with respect to the complementation as well as quasi-complementation. In 
other words, we obtain a Boolean based and, at the same time, a quasi-Boolean 
based algebra. This observation may open up a study in the field of rough set 
theory. Besides, another investigation may be made on covering cases. Various 
lower-upper approximations based on covering are available in many literature. 
Some of them are dual with respect to set-complementation whereas others are 
not so. An attempt may be taken in favour of capturing the notion of duality with 
respect to quasi-complementation in these lower-upper approximations. This may 
lead us to construct rough set model of remaining algebras discussed in Section 2. 
Moreover, it may give a new direction of research regarding complementation and 
quasi-complementation in covering based rough set theory. However, the second 
author of this paper has taken an initiative [56] in this direction.

3. 	 Another interesting as well as important issue is raised below. In all set-models 
approximation operators are defined in terms of granules of the universe. The 
basic philosophy of rough set study is that the universe of discourse is granulated, 
elements or objects within the same granule are indiscernible. Granules are in 
a sense the atoms of the universe. Now the question is, what should the basic 
properties of the granules?
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A few attempts in this direction have been made so far [15,3]. An incomplete study in 
this respect was presented in International Joint Conference on Rough Sets, 3-7 July 2017 
Olsztyn, Poland. We present below some snapshots from that lecture to the consideration of 
the readers.

What is done with these granules?

—	 Ultimately approximating a subset of the universe in terms of subsets formed out 
of the granules.

—	 Presented philosophically, a concept is thus understood/described in terms of two 
better understood concepts. For example, the definable sets in the Pawlakian case.

—	 The rudimentary or atomic concepts are represented (extensionally) by the 
granules.

—	 A demonstrable concept is one whose extension has the same lower and upper 
approximations. These may be considered as the most understood concepts i.e. 
without any ambiguity—expectedly G G=  for any granule G.

—	 The next purpose is to understand complex concepts like P & Q, P or Q, non-P 
etc. by approximations again.

From the angle of application granules are tangible and useful clusters of points. 
Research in rough sets leads us to the need for developing a proper theory of granulation 
so as to be able to address the fundamental issues of axiomatizing as well as capturing the 
requirements of application satisfactorily.
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