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Algebras and Logics Emerging Out of Rough Sets
(An Invited Review Paper)

MIHIR KUMAR CHAKRABORTY AND MASIUR RAHAMAN SARDAR

Abstract

This is basically a survey work though some new results have also been incorporated.
The contents presented are from the research done by Chakraborty and his co-workers
for last three decades. A major part consists in presentation of set-models of abstract
algebraic structures generated from rough sets. Three Types of logics developed during
the course of research are categorized. Some foundational issues are raised at the end
and open questions are mentioned.

Keywords: Quasi-Boolean algebra, Pre-rough algebra, Hilbert system, Modal logic,
Rough sets.

1. INTRODUCTION

Rough set theory was invented by Pawlak in the year 1982 [26] from the angle of computer-
applications. But the theory has surpassed the boundary and entered the domains of
mathematics, philosophy etc. In this paper we present a survey of the mathematical (algebraic
and logical) work done by Chakraborty and his co-workers and collaborators in the theoretical
domain.

According to the Pawlak’s first paper [26], the universe U (a non empty set) is partitioned
into equivalence classes by an attribute-value data table. For our purpose, the starting point is
the pair (U, R), called the approximation space where U is the universe and R is an equlvalence
relation generating a partition. Any subset P of U is then approximated by two sets P, and P

called the lower and upper approximations of P and defined as follows:

I_’Rz{ueU:[u]RgP}
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232 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

and

PRz{ueU:[u]RmP;é(Z)}

where [u]}, is the equivalence class due to R to which u belongs. In the power set 2V of U an
equivalence relation = is naturally generated by

R

P=Q if and only if ]—)RZQR and I_’Rzé

in which case P and Q are called roughly equal. Any element in the quotient set 2Y / =, [P] N~
has been defined as a rough set in [26]. There are equivalent definitions too (see [2]). Algebras
generated in 2Y / ~ may be considered as the beginning of the abstract algebraic studies in

rough sets. The relation R has been taken to be an arbitrary one in later years and instead of a
relation covering has been imposed on U. In both the cases lower and upper approximations
are defined and their properties are studied.

Side by side the algebras corresponding logical systems have been designed. This is
done in three different ways which will be clarified later. However, it is necessary to be
introduced to the basic notions of logical systems.

A logical system is the pair (£, |-) where £ is a set of well-formed formulas (wffs) over
an alphabet A of symbols and |- a binary relation from 2, the power set of £ to £. In case of
standard proposition logic the set A = {p,, p,, p5 ..., A, V, =, ), (} and L is the set of finite
strings on A given by:

pi|—|a|a/\ﬂ|avﬂ|a = B

Usually — and one of the binary connectives A, V and = are taken as basic and the
other two are defined (see [24]). A subset of £ is taken as axiom set and Modus Ponens
(MP) is the only rule of inference given by: ‘to derive f§ from o and o = £’. With the help of
axioms and MP the relation |- (consequence relation) is defined (see [24]). Semantics is given
by a valuation v which is a special mapping from £ to B (an arbitrary Boolean Algebra). It
is proved that I' |- a holds if and only if w(I') = {1} implies v(«) = 1 where 1 is the greatest
element of B.

Classical proposition logic is extended in Modal logic by first extending the alphabet
with one unary operator L (and defining another operator M by —L—) and enhancing the set
of axioms by modal axioms. Depending on the axioms the hierarchy of modal systems is
constituted (see Section 3). Besides MP, another rule Necessitation (N) is taken and the

Journal of Combinatorics, Information & System Sciences



Algebras and Logics Emerging Out of Rough Sets 233

consequence relation |5 for modal system S is defined (see [18]). Standard semantics of
modal system is given in terms of Kripke frame (see [18]). For this paper a little detail of
Kripke frame will be presented in Section 3. The aim here is to show that modal systems can
be given rough set semantics and in the other direction some new modal systems are created
from the existing rough set (covering based) models.

Section-wise details of this paper are as follows: Section 2 contains algebraic and logical
developments. In Section 3, modal logic systems and rough sets are presented. Section 4
deals with membership function based MF-rough sets. Rough set models of various algebras
are presented in Section 5. Section 6 contains some concluding remarks.

2. ALGEBRAIC AND LOGICAL DEVELOPMENTS

In this section, we review some abstract algebraic structures which were developed in the
context of rough set theory. The Hilbert type logic systems corresponding to some of the
algebras will also be presented.

In [1], the authors proposed two algebraic structures viz. pre-rough algebra and rough
algebra in the framework of rough set theory specially based on the notions of rough inclusion
and rough equality. It has been described in the same paper as follows. Let <U , R> be an

approximation space. Two subsets P and Q of U are said to be roughly equal if P =0 , and
I_’R = QR. An equivalence relation % is defined in 2, the power set of U, as P = Q if and
only if P and Q are roughly equal. Each equivalence class [P] ~ of 2Y / ~ is called a rough
set (see introduction). Using these rough sets and suitable operations | |, [ |, — and 1,
<2U / = LI =1 [0]5, [U ]5> is a pre-rough algebra, a little bit more, a rough algebra.
The operations | |, [, — and 7 are defined as

[Pl= [1[0]z = (PT10]%.

[Pz LI [Q]= = [PLIO]=,

—[Plz =[Pl

IPle =[P)s.

where

Pl 10= (Pr\Q)u(Pm@R m(PmQR)CJ,
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234  Mihir Kumar Chakraborty and Masiur Rahaman Sardar

PLIO= (PuQ)m(PuQR u(PuQR)cj,
-p =P
IP=P,.

M, U and ¢ being the set theoretic intersection, union and complementation. The lattice
order [_ in the above pre-rough algebra is given by [P]z [ [Q]x ifand only if P is roughly

—R —R
included in Q, ie., P, QQR and P < Q . Thereafter, features were abstracted from

<2U / = L1 [0]5 , [U ]5> to yield abstractly pre-rough algebra and rough algebra.

2.1 Algebras

To begin with, it is necessary to define quasi-Boolean algebra (qBa). qBa is short of Boolean
algebra in that the law of excluded middle (and hence the law of contradiction) does not hold
in it. In fact, in place of complementation here is taken the quasi-complementation about
which more details will be discussed in Section 5. It is interesting to note that while the
subsets of a set (the universal set U) form a Boolean algebra, the rough sets in U form a quasi-
Boolean algebra.

Formally, it is defined by:

Definition 1. [34] A quasi-Boolean algebra (qBa) is an abstract structure
(U, A, v, =, 0, 1) where

1. <U, v, A, 0, 1> is a bounded distributive lattice

2. —~—x=xforallxinU

3. ~(xVy)=—x A~ forallx,yin U

We now proceed to the main definition related with Pawlakian rough sets.

Definition 2. [1] A pre-rough algebra is an abstract structure <U , A, Vv, =, 1,0, 1>,
where I is a unary operator on U with the following conditions:

1. <U, AV, 4, 0, 1> is a gBa.

2. II=1.

3. IxANy)=Ix ANl forallx,y € U
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Ix < x, for all x € U (< is the lattice order).

IIx = Ix, for all x € U.

Clx = Ix, for all x € U, where Cx = —[x.

—Ix V Ix =1, forall x € U.

IxVy)=IxV Iy forallx,y € U.
Cx<CyandIx < Iyimplyx <y, forallx,y € U.

O o N S A

Definition 3. [/] Let <U, A Vv, = 1,0, 1> be pre-rough algebra. Then, it is said to be
arough algebra if the sub algebra I(U) = {Iu : u € U} is complete and completely distributive,
i.e., for any subset X of I(U), lub of X and glb of X exist and for any subset {x;: i € I, j € J}
of 1(U),

AVY, =V AX 1(0) holds, I, J being index sets.

iel jeJ fil—>J iel 7

In the above two algebras, a binary operation =, called rough implication needs to be
defined in terms of other operations satisfying the property (P.):

x <yifandonlyifx=y=1,forallx,y € U
The rough implication that was defined in [1] is
x=>y=0CIxV Iy) N(—Cx V Cy), forallx,y € U.

It has a natural interpretation in the field of classical rough set theory. In fact, it
corresponds to the notion of rough inclusion [28] viz. a subset P is roughly included in a

—R —R
subset O with respect to the approximation space (U, R), P, Q C U if P < Q pand P c 0.

It has another importance for developing logic systems corresponding to pre-rough algebra
and rough algebra. In a Hilbert type logic system corresponding to an abstract algebra, it is
crucial to have an implication (=) which is interpreted in the corresponding algebra as the
operation = having the property (P.). We shall discuss about the logic systems corresponding
to pre-rough algebra and rough algebra in the next subsection.

In [1], a predecessor of pre-rough algebra, and of course rough algebra, has been
highlighted and called topological quasi-Boolean algebra (tqBa). It is the algebra satisfying
the conditions from 1 to 6 of pre-rough algebra only (Definition 2). The nomenclature of
this algebra comes from topological Boolean algebra that was already known since 1944
[34]. A topological Boolean algebra is a Boolean algebra endowed with an interior operator
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236 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

1 satisfying the conditions from 2 to 5 of pre-rough algebra. Thus, a tqBa which is based on
quasi-Boolean algebra (not necessarily a Boolean algebra) possesses one more axiom, viz.
CIx = Ix. This axiom is obviously equivalent to [x < ClIx and CIx < Ix in which the second
one is nothing but the algebraic counter part of modal axiom S5 [18]. Here it may be stated
that the properties 4 and 5 of pre-rough algebra are algebraic versions of modal axioms T
and S, respectively. Also the counterpart of modal axiom B is CIx < x. In view of this, the
author(s) of [45, 36] split the original notion of topological quasi-Boolean algebra, to make
it more appropriate in nomenclature, into two notions viz. topological quasi-Boolean algebra
and topological quasi-Boolean algebra 5 (tqBa5). Henceforth, in this paper, a tqBa means the
abstract algebra satisfying the conditions from 1 to 5 of pre-rough algebra whereas tqBa + 6
is the abstract algebra tqBa5. In [36], it has been proved that in a tqBa5, axiom 5 of pre-rough
algebra: IIx = Ix is redundant. Also the algebraic counter part of modal axiom B, i.e., CIx < x
holds in a tqBa5. A natural question now arises—what would be the logics corresponding to
these structures tqBa and tqBa5? Unfortunately, no affirmative response can be made on this
issue with respect to the Hilbert type logic system corresponding to these algebras. This has
been presented in [5]. In this project report, the author has shown that no binary operation =
can in general be defined in terms of other operations obeying the property (P.) in these two
algebras. The example that was constructed for the purpose is as follows.

Example 1. Let U = {0, x, y, 1}. Hasse diagram of the lattice is given in Figure 1. —is
defined as —x = x, 7y =y, 71 =0, =0 = 1 and I is defined as the identity operator, i.e., Iz = z,
for all z. Then <U, AV, =, 1,0, 1> is a tqBa as well as tqBa5. Now x = x should be an
element involving x, =, A, V and / only. In this example x =x,x Ax=x,x Vx=x,Ix =x
and hence x = x =x(# 1) butx < x.

0

Fig. 1: Hasse diagram (tqBa, tqBa5)
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In view of this example, it is clear that the three properties 7, 8 and 9 of pre-rough
algebra which do not hold in tqBa5 have a crucial role for developing the Hilbert type logic
system of pre-rough algebra. These properties are called intermediate property 1 (IP1),
intermediate property 2 (IP2) and intermediate property 3 (IP3) respectively. In [45,36], an
initiative was taken to check whether these axioms are independent or not in the context of
pre-rough algebra. In fact, the authors of [36] proved that tqBa5 + IP1 + IP3 implies IP2.
Besides this, they have shown that some axioms of pre-rough algebra like /1 =1, /Ix = Ix, Clx
= [x are also deducible from other axioms. As a result, a simplified form of pre-rough algebra
has been defined in [36]. Moreover, using these three intermediate properties three algebras
were defined in [45,37]. They are tqBa5 + IP1 called intermediate algebra of type 1 (IA1),
tqBa5 + IP2 called intermediate algebra of type 2 (IA2) and tqBa5 + IP3 called inter-mediate
algebra of type 3 (IA3). As Example 1 becomes an instance of IA2 as well as A3, no Hilbert
type logic system corresponding to IA2 and IA3 can be developed [37]. Whether such logic
system corresponding to IA1 can be constructed or not is unsolved till now.

We have already mentioned that no = satisfying the property (P.) is available in tqBa5
but such an operation (rough implication) is present in pre-rough algebra. So, a natural
question: can we construct some algebraic structures in the vicinity of pre-rough algebra
where rough implication would be available? On this issue, a sufficient amount of work has
been done in [36]. In this paper, the authors have developed a cluster of algebras weaker than
pre-rough algebra where rough implication exists. An important result that helps to construct
such algebras is the following.

Proposition 1.[36,35] In an algebraic structure based on gBa (with two unary operators
I and C, C = —I7), the following are the necessary and sufficient conditions for the rough
implication = to satisfy the property (P.,).

1. —IxViIx=1

2. x =<yimpliesIx < Iy

3. Cx=CyandIx < Ilyimplyx < y.

Thus, from the above Proposition 1, IP1 and IP3 are essential for obtaining rough
implication. Since, I(x A y) = Ix A Iy gives x < y implies Ix < [)’, the authors of [36]
presented two basic structures using the properties /(x A y) =Ix A Iy ’and x < y implies Ix
< [y’. The steps that they took in this regard are as follows.

Definition 4. An abstract algebra <U s AV, =, 1,0, 1> is said to be a System0 algebra
if and only if
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1. <U, AV, =, 0, 1> is a qBa.

3.  x = yimplies Ix < Iy.

Definition 5. An abstract algebra <U s AV, =, 1,0, 1> is said to be a Systeml algebra
if and only if <U, AV, =y 1L 0, 1> is a System0 algebra along with IP1 and IP3.

Definition 6. An abstract algebra <U s AV, =, 1,0, 1> is said to be a Systemll
algebra if and only if

1. <U, AV, =, 0, 1> is a qBa.

2. II=1.
3. IxAy)=IxAD.
4. IPl and IP3 hold.

It is clear that any Systemll algebra is a Systeml algebra. But the converse, i.e., whether
a Systeml algebra is a SystemlI algebra or not is still open [36]. Afterwards, it has been shown
in the same paper that modal axioms T: Ix < x, B: CIx < x, S, : Ix < IIx, S5: CIx < Ix do not
hold in general in a SystemlI algebra and hence in a Systeml algebra too. The example that
was considered to show this is as follows.

Example 2. A lattice U = {0, x, y, u, v, 1} whose Hasse diagram is shown in Figure 2
and —, [ are defined in the tables given below.
1

0
Fig. 2: Hasse diagram (SystemlII algebra)
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Oxyuvl
- |1lvuyx0
Ovx1x1
C|0vOvxl

U along with the above operations is a Systemll algebra. In this example, Iu £ u,Clu
Zuly £ Iy, Cly £ Iy,

The authors further noticed that if modal axiom T is added with Systeml or SystemlII
algebra then it becomes a pre-rough algebra straightway. So, they added modal axioms B,
S,, S5 separately to a Systeml and SystemlI algebras. According to them, SystemIB algebra,
Systeml4 algebra, Systeml5 algebra are respectively Systeml algebra + modal axiom B,
Systeml algebra + S, and Systeml algebra + Ss. Similar is the case for the other structures
SystemlIB algebra, Systemll4 algebra, Systemll5 algebra. Besides this, to obtain stronger
structures they replaced < by = in the modal axioms S,, S5 and added them to a Systeml and
Systemll algebra as before. As a result, SystemI4E algebra (Systeml algebra + /Ix = Ix) and
similar other algebras SystemISE, SystemlII4E, SystemlISE are available in [36]. In the same
paper relationships among the algebras were studied and presented. For a clear understanding
of the various algebraic structures discussed so far, we refer to Figure 3 on page 240. Of
these, no implication = can in general be defined in terms of other operations satisfying the
property (P.) in the bold faced algebras except for [A1 where availability of such implication
is unsolved till now. For the remaining algebras, the rough implication works smoothly.

In our paper [43], an initiative has been taken to obtain proper set theoretic rough set
models for some of the above algebras prior to pre-rough algebra. The phrase ‘proper set
theoretic rough set model’ means that it should be a set model and should not reduce to a pre-

rough algebra. In fact, for any approximation space <U , R> <2U /5, [,

L=, 1, [(Z)]E, [U ]5> becomes a pre-rough algebra and hence it is not a proper set theoretic

rough set model of any algebra weaker than pre-rough algebra. For proper set theoretic rough
set models, it is necessary to check which properties of / are available in the aforesaid algebras.
For example, in tqBa modal axioms 7, §4 and hence axiom D (/x < Cx) are available, whereas
in tqBa$5, A1, IA2 and IA3 modal axioms 7, S,, S5 and hence axioms D, B hold. But (in view
of standard modal systems), no information is available regarding the algebraic counterpart
of the modal axiom K. We have further noticed that there are two types of algebras, one in
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gqBa
SystemO
tgBa SystemlI
SystemlI4

. ‘SystemIB SystemlII

tqBa5 L
SystémIB
SystemI4E
- SystemII4
~1A3 Sl ~ SystemIT4E

1AL < \ ~ SystemII5
\ ~ SystemlII5E

Pre-rough

Fig. 3: Algebras in the vicinity of pre-rough algebra, P =3 Q stands for the
algebra Q has one more operator and some axioms for the new operator than the
algebra P. P > Q stands for both the algebras P and Q have the same operations and
the algebra Q is always the algebra P. P ... Q stands for the algebras

P and Q are independent.
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which no implication can be defined in terms of other operations satisfying the property (P.,)
(e.g., tqBa, tqBaS5, IA2, IA3 etc.), other in which an implication (the rough implication) is
available obeying the property (P.) (e.g., Systeml, Systemll, Systeml4, Systeml5 etc.). As
modal axiom K in the form /(x = y) = (Ix = [y) = 1 is irrelevant for the algebras tqBa, tqBa5,
IA2, IA3 etc. (as no = is available), we consider the other form of modal axiom K: /(—x V y)
< —Ix V Iy. The above form is similar to /(4 U B) C (I4)“ U IB, the algebraic counterpart
of the modal axiom K in Boolean base. Thereafter, we have checked whether this form of
modal axiom K holds or not in the above algebras. We have shown that this axiom holds in
pre-rough algebra, IA1, IA2 but does not hold in tqBa, tqBa5, IA3, System0, Systeml,
SystemlI etc. Later, a number of new abstract algebras based on qBa have been introduced in
order to fulfil the following purposes:

- In these algebras, properties of / are enhanced in hierarchical order starting form
modal axiom D (axiom K: I(—x V y) < —Ix V [y is not considered as it does not
hold generally in our constructed rough set models) [see Section 5].

—  Proper set theoretic rough set models may be constructed for these algebras.
The newly created algebras are thus:

Definition 7. An abstract algebra <U , AV, = 1,0, 1>, where 1 is a unary operator on
U, is said to be a semi topological quasi-Boolean algebra (stqBa) if and only if

1. <U, AV, 4, 0, 1> is a gBa.

2. I1=1.

3. IxANy)=Ix ANy forallx,y € U.

In this algebra modal axiom K, D and T do not hold [43].

Definition 8. Let <U, AV, =, 1,0, 1> be a stqBa. Then it is said to be a semi
topological quasi-Boolean algebra with modal axiom D (stqBaD) if and only if Ix < Cx, for
all x € U (Cx =~ ).

The modal axiom T generally does not hold in a stqBaD [43].

Definition 9. Let <U, AV, = 1,0, 1> be a stqgBa. Then it is said to be a semi

topological quasi-Boolean algebra with modal axiom T (stqBaT) if and only if Ix < x, for all
xe U
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It is obvious that a stqBaT is a stqBaD but the converse is not true. Further it has been
shown that the modal axioms B(CIx < x) and S,(/x < IIx) generally do not hold in a stqBaT
[43].

Definition 10. Let <U, AV, 1,0, 1> be a stqBal. Then it is said to be a semi

topological quasi-Boolean algebra with modal axiom B (stgBaB) if and only if Clx < x, for
all x € U (Cx =~ ).

The modal axioms S, and S5(CIx < Ix) generally do not hold in a stqBaB [43].

A tqBa is nothing but a stqBaT + modal axiom S,. In a tqBa the modal axioms B and S;
do not hold [43]. The algebras stqBaB and tqBa are independent to each other.

A tqBa5 is a stqBaT + modal axiom S;.
Figure 4 shows a relationship between the old and new algebras.

Logics and proper set theoretic rough set models of newly created algebras have been
discussed in Subsection 2.2 and Section 5 respectively.

Another direction of work has been done in [37]. It has been mentioned earlier that it
is not possible to define = in terms of other operations satisfying the property (P.) in a qBa
(even in a tqBa5). But, to develop the Hilbert type axiomatic system corresponding to these
algebras such an implication is needed. In this paper [37], such an implication operation has
been imposed in gBa and some other stronger structures where this operation is not available
in general. This is, in a way, similar to Rasiowa’s approach in [34] where the algebraic
structure called relatively pseudo-complemented lattice (now called residuated lattice) had
been introduced by putting together positive implication algebra and a lattice structure. In
the present case, implicative algebra and quasi-Boolean algebra have been amalgamated.
Following Rasiowa [34] these structures have been named implicative quasi-Boolean
algebra(IqBa) and implicative quasi-Boolean algebra with operator(IqBaQO). The operators
they [37] have taken are topological operators corresponding to the modal axioms 7, S, and S
[18]. The corresponding algebras have been named as implicative quasi-Boolean algebra with
modal axiom T(IqBaT), implicative quasi-Boolean algebra with modal axiom S,(IqBa4)
and implicative quasi-Boolean algebra with modal axiom Ss(IqBa5). The definitions and
important features of these algebras are as follows (see [37] for details).

Definition 11. An abstract algebra <U, A, V, =, =, 0, l> is called an implicative
quasi-Boolean algebra(lgBa) if and only if
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qBa
stqBa SystemO algebra
stqBaT  stqBaD
stqBaB ... tqBa Systeml algebra

\ tqBab

SystemlII algebra

Pre-rough algebra

Fig. 4: Relationship diagram of the newly created algebras and old algebras. Bold
faced algebras are newly introduced in our paper [43] whereas others are available in
different literature. P =3 Q stands for the algebra Q contains one new operator and
some axioms for the new operator than the algebra P. P = Q stands for both the
algebras P and Q have the same operations but Q contains some more axioms than P.

P ... Q stands for the algebras P and Q are independent to each other.
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1.
2.

<U, A, Vv, 4, 0, 1> is a qBa.
x=>y=1lifandonlyifx <y, forall x,y € U. (P.)

Definition 12. An algebra <U, AV, =, —, 1,0, l>, where 1 is a unary operator, will

be called an implicative quasi-Boolean algebra with operator (IgBaO) if and only if

1.

2.
3.

<U, AV, =, —, 0, 1> is a IqBa.
11=1.
IxANy)=Ix NIy, forallx,y € U.

Definition 13. Let (U, A, v, =, —, I, 0, 1) be a IgBaO. Then it will be an

1.

implicative quasi-Boolean algebra with modal axiom T (IgBaT) if and only if
Ix < x holds, for all x € U (modal axiom T),

implicative quasi-Boolean algebra with modal axiom S, (IgBa#4) if and only if it is
a lgBaT and Ix < IIx, for all x € U (modal axiom S,),

implicative quasi-Boolean algebra with modal axiom S5 (IgBaJ3) if and only if it is
a IgBa4 and Clx < Ix, for all x € U, where C = —~[~ (modal axiom S;).

By several examples it has been shown [37] that modal axiom K in the form /(x = y) =
(Ix = Iy) does not hold generally in these algebras. As earlier, it has also been mentioned [37]
that the axiom Ix < [Ix is redundant in a IgBa5 and the modal axiom B(CIx < x) also follows
in this algebra. The authors of [37] also observed the followings.

A IgBa5 is a tqBa5 algebra along with an implication having the property (P.):
x =y =1ifand only ifx < y for all x, y.

If the above implication is defined by x =, y=—x V y in a qBa and the property
(P.) is assumed for =, then the qBa becomes a Boolean algebra. Hence, a IqBa5
then turns into a topological Boolean algebra [34] (also known as an interior
algebra [7] with S axiom).

If the above implication is defined by x =, y = (=Ix V Iy) A (=Cx V Cy) in
a IqBa5 and the property (P.) is assumed for =, then the IqBa5 becomes a
pre-rough algebra. Thus, a tqBa5 with =, satisfying (P_) turns into a pre-rough
algebra.

If the above implication is defined by x =, y=(Cx Vy) A (x V Cy) [8] ina
IqBa5 and the property (P.,) is assumed for =, then the IqBa5 becomes a 3-valued
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Lukasiewicz (Moisil) algebra [8]. Thus, a tqBa5 with =, satisfying (P.) turns into
a 3-valued Lukasiewicz (Moisil) algebra.

Subsequently, we have expanded the area considering the three intermediate properties
IP1, IP2 and IP3. It is to be noted that the properties are separately used to define the three
intermediate algebras IA1, A2, IA3 and no implication can in general be defined in terms of
other operations satisfying the property (P.) in IA2, IA3 and in case of A1, it is unsolved. We
added the three intermediate properties IP1, IP2 and IP3 separately to IqBaO, IqBaT, IqBa4
and IqBa5 and investigated the consequences [44]. As a result, twelve additional algebraic
structures had been obtained as shown in Figure 5. Of these, the chain of algebras qBa, IqBa,
IqBaO, IqBaT, IqBa4 and IqBa5 (bold face) are included in [37]. In fact, we have actually
added the modal axiom T to IqBal to obtain IqBal,T which is the same as adding IP1 to
IgBaT. Similar is the case for all other structures.

We now present a brief discussion about the algebras just mentioned above (see [44]
for details).

Definition 14. Let <U, AV, =, =, 1,0, 1>, be a IqgBaO. Then it is said to be an
1. implicative quasi-Boolean algebra with IP1 (IqgBal) if and only if ~Ix V Ix = 1

holds, for all x € U,

2. implicative quasi-Boolean algebra with IP2 (IgBa2) if and only if I(x V y) =
Ix V Iy holds, for all x, y € U,

3. implicative quasi-Boolean algebra with IP3 (IgBa3) if and only if Cx < Cy and
Ix = lyimplyx <y, forallx,y € U.

By several examples, independence of the algebras IqBal, IqBaT, IqBa2 and IqBa3
has been established.

Definition 15. Let <U, AV, =, 1,0, 1>, be a IqgBaO. Then it is said to be an

1. implicative quasi-Boolean algebra with IP1 and modal axiom T (IgBal,T) if and
only itis a lgBal and Ix < x, for all x E U,

2. implicative quasi-Boolean algebra with IP2 and modal axiom T (IgBa2,T) if and
only if'itis a IgBa2 and Ix <x, for all x € U,

3. implicative quasi-Boolean algebra with IP3 and modal axiom T (IgBa3,T) if and
only ifit is a IgBa3 and Ix <x, for all x € U.
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qgBa
IgBa
IgqBaO
TP1 T P2 1P3
IgBal IgBaT IgBa2 IqBa3
T T T
IP1 Sa P2 1P3
IqBa4
IgBal,T (tgBa + (P=.)) IgBa2, T IqBa3, T
S4 54 54
1P3
IqBa5
IgqBal,4 (tgBab + (P=)) [qBa2,4 IqBa3,4
S5 55 55
IP1 P2 1P3
IgBal,5 IqBa2,5 IqBa3,5
(TIA1+ (P)) (1A2+ (P)) (1A3+ (P=))

Fig. 5: Algebras based on IqBaO
P =X Q stands for the algebra Q has one more operation than the algebra P. P - Q

stands for both the algebras P and Q have the same operations but Q has one more
axiom than P.
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As before, independence of the algebras IqBal,T, IqBa4, IqBa2,T and IqBa3,T has also
been shown.

Definition 16. Let <U, AV, =, =, 1,0, 1> be a IqgBaO. Then it is said to be an

1.

implicative quasi-Boolean algebra with IP1 and modal axiom S4 (IgBal,4) if and
onlyitis a IgBal,T and Ix < Ilx, for all x € U,

implicative quasi-Boolean algebra with IP2 and modal axiom S4 (IqBa2,4) if and
only ifitis a IgBa2,T and Ix < IIx, for all x € U,

implicative quasi-Boolean algebra with IP3 and modal axiom S4 (IgBa3,4) if and
only ifitis a IgBa3,T and Ix < IIx, for all x € U.

Independence issue of the algebras IqBal,4, IqBa2,4, IqBa3,4 along with IqBa5 has
been established in the same paper [44] with the help of some examples.

Definition 17. Let <U, AV, =, 1,0, 1> be a IqBaO. Then it is said to be an

1.

implicative quasi-Boolean algebra with IP1 and modal axiom S5 (IqBal,5) if and
only ifitis a IgBal,4 and Clx < Ix, for all x € U,

implicative quasi-Boolean algebra with IP2 and modal axiom S5 (IgBa2,5) if and
only ifitis a IgBa2,4 and Clx < Ix, for all x € U,

implicative quasi-Boolean algebra with IP3 and modal axiom S5 (IgBa3,5) if and
only ifitis a IgBa3,4 and CIx < Ix, for all x € U.

That IqBal,5, IqBa2,5 and IqBa3,5 are independent algebras is shown in [44].

It is to be noted that if implication were imposed (satisfying the property (P.) directly
in IA1, IA2 and TA3 then [A1 + (P.), [A2 + (P.) and A3 + (P_) would be the same with the
algebras IqBal,5, IqBa2,5 and IqBa3,5 respectively.

2.2 Logics

In this section logics corresponding to the algebras discussed in subsection 2.1 will be
considered. We present mainly the Hilbert type logic system. The Sequent Calculi for most of
the algebras are available in various literature [46, 45, 36, 37, 43].

The Hilbert System for pre-rough algebra: In [1], the formal system of pre-rough
algebra has already been developed. However, the number of axioms of pre-rough algebra
has been reduced in [37]. As a consequence, the number of axioms of pre-rough logic has
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also been reduced in the same paper. The logic £,,, of the modified pre-rough algebra is as
follows [37]. The alphabet of the language of £, consists of

—  propositional variables p, g, r, ...

— unary logical connectives — and /.

—  binary logical connective A.

—  parentheses (,).

Well formed formulas (wffs) are formed in the usual way and a, B,y, J etc. are used to
denote them.

V (binary), = (binary) and C (unary) are definable logical connectives:

aVB=—(aAp),a=>B=ClaVIB) A (CaV CP), Ca=—Ia, for any wifs a, B
of Lpp,

Axioms for £, :

o=""a

Nl

aAp=>p

aNB=>BAa
aNPBVY=(@AP)V(aAy)
(@APV(@AY=an(PBVY
lo=a

lo NIB=>1(a A P)

® NNk D =

Rules of inference:

“o=Pp Modus ponens (MP)

2. o=BhP=y Hypothetical syllogism (HS)
o=y

B=a
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P
ﬁB:>—|O£
5 o=p, a=y
' a=BAYy
o=>p,B=>a vy=05 0=y
6.
(a=7)=>(p=79)
7 o=p
Y ES

o
8. — Necessitation (N)
I

la= 1B, Co=Cp
a=p

I~ o stands for a is a theorem in the logic system £, , as usual sense.

Definition 18. 4 model of Ly, is (U, v) where U = <U, AV, =, =, 1,0, l> is a pre-
rough algebra and v is a valuation function which assigns a value v(p) € U for each atomic
Wi p of Lpgy.

Remark 1. Any valuation function v can be extended to arbitrary formulae as follows

(& A B) =v(a) AV(P), v(—a) = ~v(a)V(a = P) =wva) = v(B)v(a) = I (a).

As V and C are definable connectives, it can be shown that v(a V B) = v(a) V v(B),»(Ca)
= Cv(a) where Cx = — .

Definition 19. 4 wff a is said to be true in a model <U, v> of Lo, if and only if
v(a) = 1.

Definition 20. A wff a is said to be valid in the class of all models of L, if and only if

a is true in every model <U, v> of Lppy-

Remark 2. Awff o = B is valid if and only if v(a) < w(B), for all models <U, v> of Lz,

Journal of Combinatorics, Information & System Sciences



250 Mihir Kumar Chakraborty and Masiur Rahaman Sardar

Theorem 1. (Soundness)[1]: If |-« in the logic system Ly, then o is valid in the class
of all models of Lyp,.

Theorem 2. (Completeness)[1 ]: If o is valid in the class of all models of Ly, then |-
a in the logic system Ly ,.

The Hilbert System for rough algebra: Rough logic £, for rough algebra has been
presented in [1].

The alphabet of the language of £, is the alphabet of the language of £,,, + logical
symbol V, standing for infinite disjunction. One definable logical symbol A (infinite

conjuction) stands for — \V .

Formulae formation rule with respect to \V : For any index set J, V jes @ ; is a wif in
Ly, if and only if a, is of the form /B, for some B,/ € J.

Axioms: All axioms of £, along with

1. lo;= Vo, lo, foreach o, €J,

2. Ve s 421V ;e o,

3. [\/je./af =>VjeJ (x‘ja

4. VjeJAkeKla_;,k:>/\feKJVjeJI°°j,f(j)’

5. /\feKJVjejlaj,f(j):>Vjej/\ke1<10‘j,k’

where J, K are index sets and K” is the set of maps of J into K.
Io, = 1P
Ve do, =1

Rules of inference: All rules of inference of £, + one new rule:

for eachj € J.

Theorem 3. [1] £, is sound and complete relative to the class of all models of L.
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Remark 3.

1. No Hilbert type logic system can be constructed for the algebras tqBa, tqBa5, A1,
IA2, IA3. This is due to unavailability of = in these algebras.

2. As Example 1 becomes an instance of the algebras stqBa, stqBaT, stqBaD and
stqBaB, the Hilbert type system for the said algebras can not be developed.

Due to availability of rough arrow in Systeml algebra, SystemIB algebra, Systeml4
algebra, Systeml4E algebra, Systeml5 algebra, SystemISE algebra Systemll algebra and
Systemll4 algebra, the Hilbert type logic systems corresponding to these algebras have been
developed in [36].

Let £, Ly, Ly, Lyp, Lis, Lisp, Ly Ly, be the logic systems for Systeml algebra,
SystemIB algebra, Systeml4 algebra, SystemI4E algebra, Systeml5 algebra, SystemISE
algebra, Systemll algebra and Systemll4 algebra respectively.

The Hilbert type System £, for Systeml algebra: The language of £, is the same as
that of £, . The first six axioms and all rules of £, are the axioms and rules of this system.

The Hilbert Systems L, £,,, L., L5, L5, £, L,,: The languages of the systems
L Ly, Lipy Lisy Lisp, Ly, L4 are the same as that of £,. In all cases, all axioms and rules of
L, are there together with some extra axiom(s) viz.,

Clo = o for L,

lo = [l for £,

Io. = [lo and [lo. = o for £,

Cla = Jo for £,

Clo = Ia and Jo for L,

I(o A B)=Ia A IB for £,

I(o A B) = Ia A I and Ia = o for £,,,.

Theorem 4. [36] All these systems L, Ly, Ly, Ly, L5, Lisp, L, Ly, are sound and
complete relative to the class of all corresponding models.

In each of the implicative algebras, implication has been imposed there. So, the Hilbert
systems corresponding to these algebras have been constructed and are available in [37,44].

In [37], the Hilbert Systems L,, L,,, L, L,, L corresponding to the algebras IqBa, I[qBaO,
IgBaT, IqBa4 and IgBa5 have been presented.
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The Hilbert system L,: The alphabet of the language of L, consists of

—  propositional variables p, g, 7, ...
— unary logical connective —.
— Dbinary logical connectives A and =.

—  parentheses (, ).
Well formed formulas (wffs) are formed in the usual way and denoted by a, 3, v, 0 etc.

Axioms for L,:

1. a=>—""a

2. —Ta=>a

3. aAB=>p

4, aAP=PAa

5. aABVy=(@AP)V(aAy)
6. @APV@AD>aABVY)

Rules of inference:

, =
1. %ﬁ Modus ponens (MP)

a=p, =y

2. Hypothetical syllogism (HS)
o=y
J—
f=a
4, —2=PB
ﬁB:ﬁa
5 a=>pB,a=7y
' a=>PBAy
6 o=>pB,f=>a, A=0,d=>y

(a=y)=(p=79)
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The Hilbert systems L, L, L,, Ls: The alphabets of the language of L, L, L,, Ls are
the same and that is: the alphabet of the language of L, with one additional logical connective
I Cis a definable connective where C = —/[—.

la is a wit if a is so.

Axioms for L, L, L,, L:

All axioms of L, + Ia. A IB = I(a. A B) for L,

All axioms of L, + Ia. A I = I(a A B) +Ia = o for L,.

All axioms of L, + Io. A I = I(a A B) + oo = a + lo. = []o for L,.

All axioms of L, + Ia. A I = I(a A B) + lo. = o+ Clo. = o for Ls.

Rules for L, L, L,, L;: In all cases, rules are the same and that is: the Rules of inference

of L, along with

o=p and - Necessitation (N).
la= 1P la

In[44), L\, Ly, Ly, L) 1y Ly 1 Ly 1o Ly 4o Ly 4o Ly 4 Ly s, Ly 5, Ly 5 are the logic systems
for the algebras IqBal, IqBa2, IqBa3, IqBal,T, IqBa2,T, IqBa3,T, IqBal 4, IqBa2,4,
IgBa3,4, IqBal,5, IqgBa2,5 and IqBa3,5 respectively.

Hilbert systems L, L, 1, L, ,, L, 5: The alphabets of the language of L,, L, 1, L, 4, L, s
are the same with the alphabet of the language of L,

Axioms for L,, L, 1, L, 4, L, 5

All axioms of L, + ~/a. V [a for L,.

All axioms of L, + la. = a for L,

All axioms of L, + lo. = [lo. for L, .

All axioms of L, + Cla. = o for L, .

Rules for L, L, , L, 4 L, 5: In all cases, rules are the same with the rules of L,

The Hilbert systems L,, L, ;, L, ,, L, 5s- The alphabets of the language of L,, L, 1, L, 4,
L, 5 are the same with the alphabet of the language of L,
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Axioms for L,, L, 1, L, 4, L, s:

All axioms of L, + /(o V B) = la vV I for L,.

All axioms of L, + o = a for L, ;.

All axioms of L, ,+ lo. = [lo. for L, ,.

All axioms of L, + Cla. = [o. for L, 5.

Rules for L,, L, 1, L, 4 L, s: In all cases, rules are the same with the rules of L,

Hilbert systems L,, L; 1, L, ,, L; 5: The alphabets of the language of L, L; 7, L; 4, L; s
are the same with the alphabet of the language of L,

Axioms for L, L; 1, L; 4, L; &

All axioms of L, are the axioms of L;.
All axioms of L, + la = a for L; ;.

All axioms of Ly + lo. = [lo. for L, .

All axioms of L; ,+ Clo = [o. for L; s.

Rules for L,, L; 1, L; 4, L; 5: In all cases, rules are the same with the rules of L, along
with one new rule:

la= 1B, Ca=CB
a=B '

Theorem 5. [37, 44] With respect to the class of corresponding models the above
Hilbert Systems L, Lo, Ly, Ly, Ls, Ly, Ly 5 Ly s Ly 5, Ly, Ly g5 Ly g5 Ly 5, L3, Ly 1y Ly 4, Ly s are
sound and complete.

3. MODAL LOGIC SYSTEMS AND ROUGH SETS

The standard normal modal systems are K, D, T, S,, B, Ss. These are classical propositional
logics enhanced by modal operators L (necessity) and M (possibility). Along with the axioms
of propositional logic, modal axioms are added to define the systems in a hierarchical manner
as given below:
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System K: Propositional logic axioms + L(a = ) = (La = LP) (modal axiom K).
System D. System K + (Lo = Ma) (modal axiom D) where Mo = —~L—a.

System 7: System K + (Lo = o) (modal axiom 7).

System S,: System 7+ (La = LLa) (modal axiom S,).

System B: System T+ (o = LMa) (modal axiom B).

System Ss: System 7'+ (MLa = La) (modal axiom Sj).

There are two rules of inference:

o, o=p

MP (Modus Ponens): 5

and

o
N (Necessitation): —
La

for all wffs a, B.

The language or the set of all wifs shall be denoted by £,,,. The usual semantics for
modal systems is the Kripke semantics for which we refer to [18]. However, for our current
purpose we present it with little modifications as below.

Kripke semantics: A Kripke frame is a pair Fy- = (U, p) where U is a non-empty set of
worlds and p is a binary relation on U called the accessibility relation. A frame F- = (U, p) is
said to be reflexive/symmetric/transitive if and only if p is so.

A Kripke model is a triple M- = (U, p, v) where (U, p) is a Kripke frame and v : Prop
- 2% is a valuation function from Prop (the set of all propositional variables) to the power
set of U.

Given a Kripke frame . = (U, p), the operation L : 2Y - 2Y%on the power set 2V is
defined by Lp(P) = {u € U : p(u) € P} where p(u) = {w € U : upw}. The dual operation of
L, is defined by M (P) = (L (P°))" = {u € U: p(u) N P # 0}, where (.)° is the complement
operation. L (P) and M (P) are respectively the lower and upper approximations of P as
defined in Subsection 3.1 on page 257. We adopt the new notations to make the correspondence
with the modal operators L and M transparent.

Definition 21. The truth set of a modal formula o. € L,,; in a Kripke model M, = (U,
p, v), denoted by [a] ,, o IS defined by:
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(], = )
[_'a]M,c = ([Q]MK)C

[a vV B]MK: [OL]M,C U [B] My
Loty = L[],

A formula o is true (or satisfied) at u in a model M- (notation: M., u |=K o, where the
subscript K means ‘Kripke’) if u € [a] ,, oA Sformula a is true in a model M. (notation: M

Fi @) if[al v, = U.
A formula o is valid at u € U in a Kripke frame F,- = (U, p) (notation: F., u |=K a) if o
is true at u in every model M- = (U, p, v).

A formula o is valid in a frame F- (notation: F |=K o) if o is valid at each u € U in the
Sframe Fj. .

For any modal system S, the set of all theorems in S is denoted by 7/m(S). A normal
modal system S is characterized by a class of frames F' if for any modal formula o, o €
Thm(S) if and only if « is valid in all frames in . The following results are well known:

1.  Kis characterized by the class of all frames.

2. S, 1s characterized by the class of all S, frames.

3. Bis characterized by the class of all reflexive and symmetric frames.
For details of proof, one can see [18] and [6].

We shall now present rough set semantics for the modal logic systems. In order to do
that it is required to observe the rough set theoretic equivalents of modal properties expressed
by modal formulas.
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Rought set theoretic properties Corresponding modal properties
Uu=U :—;; (Rule N)
PNQcPnQ L(o. AB) = (Lo ALB)
PNnQcPnQ (Lo A LB) = L(o AB)
P Q implies P Q %
PcP Lo = a(T)
PcP Lo = Ma(D)
Pc (F) o = LMo, (B)
Pc @ Lo = LLo. (S,)
@ Q_I_J MLo = Lo (S5)
(PruQ)e(pyuQ L(a= )= (Lo > LP) (K)

P and P are respectively the lower and upper approximations of the set P which are
defined in the relational approach (Subsection 3.1) and covering based approach (Subsection

3.2 on page 259).
3.1 Relational approach

As mentioned in the introduction an approximation space in Pawlak’s rough set theory is
<U , R> where U is a non empty set and R is an equivalence relation on U. A pair of lower-
upper approximations of any subset P of U is defined as

£R={u € U:[u]RgP}

and

I_DRz{u € U:[u]RmP;t(i)},

where [u], = {v € U: uRv}. This notion has been generalized by taking an arbitrary relation
p in lieu of the equivalence relation R and imposing conditions like reflexivity, symmetry and
transitivity etc. gradually on p [52,48,41]. This has been done in two steps. In the first step, a
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granule p,, for each u € U, has been defined as p, = {v € U : upv}. In the second step, for

each subset P of U, lower approximation P, and upper approximation P’ are defined by

P,={ueU:p, <P} (=L,(P))

—p

and

P’ ={ucU:p, nP=0}(=M,(P)).

With these definitions one can proceed towards their properties and depending on various
properties (e.g. reflexivity, symmetry, transitivity, seriality and their various combinations)
of the relation p various properties of the lower and upper approximations are obtained.
The following Table 1 may be observed where the suffixes of p namely r, s and ¢ or their
combinations indicate that the relation is reflexive, symmetric and transitive respectively or
their combinations. p,,. denotes a serial relation.

Table 1: Properties of relation based approximations

PP [ P | P[P | Pri| Py | Pros| Peer

Duality of P, P Y| Y|Y|Y|Y|Y|Y|Y]|Y
0=0 N|N[N[N|Y|Y|N]|Y]| Y

0=0 Y| Y|Y|Y|Y|Y|Y|Y]|Y

U=U Y| Y|Y|Y|Y|Y|Y|Y]|Y
U=U N|N[N[N|Y|Y|N]|Y]| Y
PNQcPNQ Y| Y|Y|Y|Y|Y|Y|Y|Y
PNQcPNQ Y| Y|Y|Y|Y|Y|Y|Y|Y
PUQCPUQ Y| Y|Y|Y|Y|Y|Y|Y]|Y
PUQcPUQ Y|Y|Y|Y|Y|Y|Y|Y|Y
PCQimpliessPcQ | Y Y| Y |Y|Y|Y|Y|Y|Y
P C Q implies PcO | Y| Y|Y|Y|Y| Y| Y| Y|Y
PcP N|Y|N|IN|Y|[Y|[N]|Y|N
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PcP N|Y|N|IN|Y|Y|N]|Y|N
PP N|Y|NIN|Y|Y|N|Y|Y
Pc(P) N|[N|Y|IN|Y|IN|Y]|Y]|N
@; N|[N|Y|N|Y|IN|Y|Y]|N
gg@ N|N|N|Y|IN|Y|Y|Y|N
@gﬁ N|N|N|Y|IN|Y|Y|Y|N
Pc(P) N|N|[N|N|[N|[N|N|Y|N
@g_i’ N|[N|N|IN|[N|IN|N|Y|N
(PruQ)c(PyuQ | Y| Y| Y|Y|Y|Y|Y|Y]|Y

The above table is nothing but the Kripke semantics after being translated in rough set
semantics.

3.2 Covering based approach

For the definitions 22 to 28 given below in covering based approach we depend on [28, 32,
20, 14, 55,53, 21, 39, 40, 41, 42, 10, 54, 33].

Definition 22. (Covering of a set): Let U be a non empty set and C = {U(# 0) C U :

i € I}, where [ is an index set, is said to be a covering of U if

U, =U.

iel

Definition 23. (Covering approximation space): Let U be a non empty set and C be a
covering of U. Then, the ordered pair <U , C > is called a covering approximation space.

Definition 24. (Friends of u): Let <U , C > be a covering approximation space. For each
u € U, Friends of u is defined by
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Definition 25. (Neighborhood of u): Let <U , C > be a covering approximation space.
For each u € U, Neighborhood of u is defined by

Nc(u)z N U..

1
uel;

Definition 26. (Friends’ enemy of u): Let <U , C > be a covering approximation space.
For each u € U, Friends’ enemy of u is defined by

FE“(u)=U-F(u)
Definition 27. (Kernel of u): Let <U , C > be a covering approximation space. For each
u € U, Kernel of u is defined by
K(u)={y eU:VU,(u e U, = y e U,)}.

Let P¢ = {K°(u) : u € U}. Then, P€ is a partition of U and called partition generated
by the covering C.

Definition 28. (Minimal description and Maximal description of u): Let <U , C > be a

covering approximation space. For each u € U, Minimal description and Maximal description
of u are defined respectively as

md“(u) = U, €C:u€ Uand VU, € C(u € U; C U, implies U; = U)}.
and
Md(u) = {U; € C:u € Uyand V U, € C(U; 2 U, implies U, = U))}.

It is to be noted that both md“(u) and Md“(u) are subsets of 2V, power set of U, while
others are subsets of U.

Various Types of Lower and Upper Approximations

There are many lower-upper approximations in different literature based on covering
cases. Some of them are dual approximations with respect to the set theoretic complementation
while others are not so, called non-dual approximations. For our purposes, some of them
(both dual and non-dual) available in [32, 39, 51, 20, 47, 55, 9, 14, 28, 33, 49, 53, 55,
41,21,10,42,19] are presented below.
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E(P)z{u:Fc(u)gP}.
R(P)=u{U,:U,"P=0}.

P,(P)=U{K (u): K (u) < P}.
(P)={K  (u): K (1) P #0}.

G (P)=u{U,:U, c P}.

i i
C

C,(P)=((4°)) =n{us:u,nP=0}.

G (P)={ueU:N(u)c P}

G, (P)={ueU:N(u)nP =0}

C;(P)={u eU:EIx(x e N(u) and Nc(x)gP)}.

{
(68 (P)z{u € U:Vx(x € Nc(u)zNC(x)mPi(D)}.
{

u eU:Vx(u € Nc(x):NC(x)gP)}.
(P)={N(u): N (u) " P =0},

(P):{u eU:Vx(u € NC(x):xeP)}.
(P)={N(u):ucP).

With the same lower approximation there are a few different upper approximations.
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C.(P)=C.(P)=Cy(P)=Cy (P)=C. (P)=Cu (P)= B (P) = {U, <C:U, < P}

But the corresponding upper approximations are as follows.
C.(P)=C,(P)u{T:T emd® (x) and xe P-C,(P)}.
C_(P)=U{U,:U,"P#0).

C_#(P)zu{T:Tede(x) and xeP}.

(P):C@(P)u{U,. .U, m(P—C_@(P));tG)}.

+<'3| ®Q|

(P)=C.(P)U{N (u):ue(P-C,(P))#0}.

Coo(P)=Cuu (PYU(V{FC (w)iu e FE (x), ve(P-Cu(P))})

Two other types of lower and upper approximations are defined with the help of covering.
(1) Let, Gr(P)=U{U, : U, c P} = P,(P).
This is taken as lower approximation of P and is denoted by Cg, (P )

Let, Gr* (P)=U{U,:U,nP#0} =R(P).

The upper approximation is defined by C G’(P) = Gr*(P) — NEG(P), where
N EGy, (P)=Cq, (P°)-

(2) Asset D is said to be definable if and only if there exists a set A (C U) such that
D =U, . ,N(x). LetD = {D C U: D is definable}. G, G :2Y - 2Y are such that
C,(4)=U{DED:DCA}and C,(4) =U{DED:ACD}

It may be observed that U{D € D: D C A} = U{N“(x): N(x) C 4} = {x € U: N(v)
C4}=C,(4) and U{D ED:AC D} = U{N(x) :x € 4} = C,(4).

The properties of various lower and upper approximations have been summarized in
Table 2 [42].
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AlA|A|A|N|IN[A|A|A|N|IN|A|A|A|A|A|N
AlA|A|A|A|A|A|A|A|IN|[N|A|A|[A[A[A|N
A[N|A|A|A|[N|N|N|N|A|[N|N|[N|A|[N[IN|A
A[N|{N|A|A|A]A|N|N|A|[N|N|[N[A|[N[IN|A
AlA|A|A|A|A]A|A|A|A|N|JA|A|A|[A[A|A
A[N|A|A|A|[A]A|A|A|A|[N|JA|A|[A|[A[A|A
AlA|A|A|A|A]A|A|A|A|[N|JA|A|A[A[A|A
A|A|A|N|A|A|N|A|A|A|A]A|A|A|[A[A|A
AlA|A|A|A|A]A|A|A|A|[A]A|A|A|[A[A|A
A[N|A|A|A|A|A|A|A|A|[N|JA|A|A|[A[A|A
A[N|A|A|N[A|N|N|A|A|[N|A|N[A|IN[IN|A
AN|{N|N|N|IN|[N|N|A|A|[N|A|N|A|IN[IN|A
AlA|A|A|A|[A]A|A|A|A|A]A|A|A|[A[A|A
A|A|A|A|A|A]A|A|A|A|A]A|A|A|[A[A|A
AlA|A|A|A|[A]A|A|A|A|[A]A|A|A[A[A|A
N[N|{N|N|N|N|N|A|A|A|A|A|A|A|A|A|A
D% o Pl ol ol oo DD Dl e

suopewixoadde paseq SuLdA09 Jo sanaddo.ag :7 d[qel
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A few points should be noted here. First that the properties taken are not independent.
Second, which is not properly noticed always, is that some of the approximations, though
defined differently, are in fact the same. Such a case is the following.

P (4)=C,(4)=Cg, (4), for all ACU.

Third, covering systems P, to Cg, are dual with respect to the lower and upper
approximation operators while C. to C, are non-dual systems.

Observation 1. In Table 2, two pairs A, C; and C,, G5 have identical columns. Still
they are different operators as shown by examples given below.

Example 3. [42] Let U= {1,2,3,4,5,6} and C = {U,, U,, U,, U,} where U, = {1, 2},
Uy, =1{2,3,4},U; = {4,5} and U, = {6}. Now, F(I) = Yy, U, = {1,2}, F°(2) = {1,2,3,

4y, F(3) = {2,3, 4}, FS(4) = {2, 3, 4, 5}, F(5) = {4, 5}, F°(6) = {6} and N°(1) = {1, 2},
NE©2) = {2}, N“(3) = {2,3,4}, N“(4) = {4}, N°(5) = {4, 5}, N(6) = {6}. Let O = {4, 5}. Then,
R (0)=1{5} and C,(Q)=0.

Thus, A and C, are different.

Example 4. [42] Let U = {1, 2,3} and C = {U,, U,} where U, = {1, 2}, U, = {2, 3}.
Now, N°(1) = {1, 2}, N(2) = {2}, N°3) = {2, 3}. Let O = {1, 2}. Then, G,(Q) = {1,2} and

Cs(Q) = {1}. Thus, C, and C; are different.

We now present a table 3 [42] of dual systems, covering as well as relation based. In this
table only the standard modal axioms are considered.

Table 3: Table of dual systems.

PP | PP |C GGG |G |G |[R IR R (R R R, | Ry | R,
K| Y NIN|YIN|Y| N[Y|[Y|N|YIY|Y|Y|Y|Y|Y]|Y
DIY|Y|Y|Y|Y[YIN|Y|Y|Y[N|YININ|Y|Y|N|Y
T'Y|Y|Y|Y|[Y|Y|IN|Y|[Y|Y | N|]YNIN[Y|Y| N|Y
BIYININ|Y|N|N|N|Y[N|N|N|N[YIN|Y|N|Y |Y
SSINIYIY[Y| Y| YIN|IN|JY| Y| NININ|] Y N|Y|Y|Y
SsIN|N|N|Y|N|[N|N|IN|N|N[N[N[N[N[N[N|N|Y

Let us now focus only on the systems which possess K. Then depending on the identity
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of the columns below, the systems are clustered in the following groups: {P,, C,, R,.}, {P.,
R,.} and {C,, Cs, R,,}. Identity of P, and R, was evident right from the beginning of Rough
Set theory. From the other two groups we can say that P, and C, are at least modal system B
(because of the presence of R, in the group) and not Ss. Similarly, systems C, and C; are at
least S, and not S;. It has been proved in [22] that P, and C, are exactly system B and C, and
CS are exactly system S,

Covering semantics:

Definition 29. 4 covering frame is a pair F, = (U, C) where U is a non-empty set and
Cis a covering of U.

A covering model is a triple M, = (U, C, v) where (U, C) is a covering frame and v :
Prop = 2Y is a valuation.

Covering semantics for modal logic differs from the Kripke semantics only in the
interpretation of modalities L and M.

Definition 30. The truth set of a modal formula o. € L, in a covering model M= (U,
C, v) under \ semantics where A € {P,, C,, C,, Cs}, denoted by [a]kMC , Is defined by:

[PV, =vp)

[FoTy, = (0T

[V BTy, = [0, U (B,

[Lal'y, = M0l ).

A formula o is true (or satisfied) at u in a covering model M, (notation: M, u |=x o)
ifu € [0 e

A formula a is true in a model M, (notation: M |=x o) zf[(x]}}vtc =U.

A formula a.is valid at u € U in a covering frame °F = (U, C) (notation: F,u |=x o) if

o is true at u in every model M, = (U, C, v). A formula a. is valid in a frame F, (notation: F,
|=x a) if o is valid at each u € U in the frame F.

Let t(A) be the set of all tautologies in \ semantics, that is, T((\) = {a € L, : F. |=x o
for any covering frame F.}.
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P, and C, semantics:

With the above general definition of covering semantics we proceed for these particular
covering systems. Thus for modal operators, P semantic clauses in a covering model M, =
(U, C, v) are the following:

M, u |=P] La if and only if for all U, € C and for all w € U(u, w € U, implies M., w
|=P1 ).

M, u |=P] Mo if and only if there exists U; € C such that for some w € U(u, w € U,
and M, w |=P1 ).

The strategy that has been used [22] to prove ©(P,) = Thm(B) is by reducing the P,
semantics to the Kripke semantics for the modal logic B.

Definition 31. For a reflexive and symmetric Kripke frame F,- = (U, p), the P, lifting of
Fy is defined by the structure F-F1 = (U, (ij1) where CPP‘ = {{u,w} C U:upw}

The function NpPI - U— 2V is defined by Nppl(u) =U{{u, w} € CpPl cwe U

Proposition 2. Let F .71 = (U, (, pP 1) be the P, lifting of a reflexive and symmetric Kripke
frame F- = (U, p). Then the following hold.:
Py . .
1. CVis acovering of U.
2. Foralue U, NpPl (u) = p(u).
Thus, for any reflexive and symmetric Kripke model M, = (U, p, v), we have the
covering model (P, lifting of M) M1 = (U, CPP Lv).

Lemma 1. Let F;- = (U, p) and M- = (U, p, v) be any reflexive and symmetric Kripke
frame and model. Then for any formula o and for any u € U, the following hold:

1 My, u |=Kaifand0nly if M, |=P] a.
2. My kcaifand only if M |=P1 a.

3. Feu |=K a if and only if}"cpl, u |=P1 o
4. Fx |=1< o if and only if F,1 |=P1 o
Theorem 6. 7(P,) = Thm(B).

We now discuss about the logic of C, semantics. It is also exactly the modal logic B. For
modal operators, C, semantic clauses in a covering model M, = (U, C, v) are the following:
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M., u |=C4 Lo if and only if for all x, w € U(u, w € N(x) implies M, w |=C4 a).
Mo, u |=C4 Mo if and only if there exist x, w € U(u, w € N(x) and M, w |=C4 ).

Definition 32. For a reflexive and symmetric Kripke frame F,- = (U, p), the C, lifting of
Fy is defined by the structure .7-"CC4 = (U, CPC“) where Cpc d={p(u):u€ U}

The function NPC4 : U - 2Y is defined by NPC“(u) =U{pw) € CPC4 Tu € p(w)}.
As p is reflexive, C# is a covering of U.

Thus, for any reflexive and symmetric Kripke model M, = (U, p, v), we have the
covering model (C, lifting of M) M$* = (U, Cpc 4v).

Lemma 2. Let ;- = (U, p) and M- = (U, p, v) be any reflexive and symmetric Kripke
frame and model. Then for any formula o and for any u € U, the following hold:

. My, u Feaifandonly if ME*, u |=C4a.

2. My Feaifandonly if MS* |=c4 Q.

3. Feu Feaifandonly if F&*4 u |=C4(x

4. Fy Ecaifand only if F§* |=C4a

Theorem 7. 1(C4) = Thm(B).

From Theorem 6 and Theorem 7, it follows that #(P,) = Thm(B)= t(C,).
C, and C; semantics:

The C,-semantic clauses for modal operators in a covering model M, = (U, C, v) are
as follows:

Mo, u |=C2 La if and only if for all w € U(w € N(x) implies M, w |=C2 a)
M, u |=C2 Mo if and only if there exists w € U(w € N(u) and M, w |=C2 o)

Definition 33. For an S, frame F. = (U, p), the C, lifting of F is defined by the
structure F* = (U, Cpcz) where Cpc2 = {p(u) : u € U}. The function Npc2 : U - 2Yis defined
by Ny2(u) = N{p(w) € C, 2 u € p(w)}.

Proposition 3. Let ]:CCZ = (U, CPCZ) be the C, lifting of an S, frame F;. = (U, p). Then
the following hold:
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CH . .
1. C %is acovering of U.
2. Forallue U, Npcz(u) = p(u).

Thus, for any S, model M- = (U, p, v), we have the covering model MCC 2=(U, Cpcz, V).

Lemma 3. Let F;. = (U, p) and M. = (U, p, v) be any S, frame and model. Then for any
formula a and for any u € U, the following hold:

. My, u Feaifand only if ME2, u |=C20L.
2. My kcaifand only if M§? |=C2 Q.

3. Fe,u Feaifand only if F§2, u |=C2a
4. Fy Ecaifand only if F§ |=C2 o
Theorem 8. 7(C,) = Thm(S,).

We now present the C; semantics. For modal operators, semantic clauses are the
following:

M., u |=C5 La if and only if for all w € U(u € N (w) implies M, , w |=C5 a).
M, u |=C5 Mo if and only if there exists w € U(u € N (w) and M, w |=C5 a)
It has been shown that the logic of C semantics is also the modal logic S,.

Definition 34. For an S, frame F,. = (U, p), the Cs lifting of Fy is defined by the
structure fCCS = (U, Cpc5) where Cpc5 ={p'(u):u € U} and p'(u) = {w € U : wpu}.

Moreover, the function NPC5 - U — 2Y is defined by NPCS(M) =N{p'w) € CPCS Tu €
p-'(w)}.

Proposition 4. Let ]—"CCS = (U, CPC5) be the C; lifting of an S, frame F,- = (U, p). Then
the following hold:

Cs . .

1. (.7 is acovering of U.

2. Forallue U, NPC5(u) =p-'(u).

Thus, for any S, model M. = (U, p, v), we have the covering model (C; lifting of M)
M= (U, C55, v).

Lemma 4. Let F;- = (U, p) and M= (U, p, v) be any S, frame and model. Then for any
modal formula o and for any u € U, the following hold:
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. My u |=K(xifandonlyif./\/lccs,u |=C5(x.

2. My Feaifandonly if M |=C5 Q.

3. Feu Eeaifand only if FS, u |=C50c

4. Fy kcaifand only if F§° |=C5 a

Theorem 9. #(C;) = Thm(S,).

From Theorem 8 and Theorem 9, it follows that 7«(C,) = Thm(S,) = ©(Cs).

Thus, the modal system B captures P, and C, semantics and for C, and C5 semantics,
S, serves the purpose.

In [25] a modal system for C, semantics is obtained. Moreover, the technique used in
[25] to develop the modal system for C, semantics is different from the method adopted in
[22]. Completeness theorem for C, semantics has been proved by constructing a canonical
covering model.

We now present the C, semantics. For modal operators, semantics clauses are the
following:

M, u |=C1 Lo if and only if there exists U; € C such that u € U, and M, w |=Cl o,
forallw e U.

M, u |=C1 Mo if and only if for all U, € C, either u € U, or there exists w € U, such
that M, w |=C1 Q.

A new modal system M L, is defined which consists of the following axioms and rules

of inference.
Axioms:
PC,: All axioms of classical propositional logic,
M: L(a A B) = (Lo A LP),
Top: LT, where T is a propositional constant in the alphabet of the language of M Le ,
T: Lo = a,

S, La=>LLa,
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Rules:
mp: & 2=B
p
_aop
Los LB

It is to be noted that the inference rules N and RM are derivable in M/ LCl , where N, RM
are

N2
Lo

_a=p
Lo= LB’

One can easily verify the following soundness theorem by proving the validity of the
axioms and the inference rules. |, 1., 0 means a is a theorem of M L.

Theorem 10. (Soundness): For each wff o, if I, @ then l=c1 o.

We now present a sketchy proof of the corresponding completeness theorem available
in [25]. Only the modal points are presented here. Recall the notion of maximal consistent set
[6]. The following notion of canonical covering based on maximal consistent sets plays a key
role in the proof. The notation M, is used to denote the set of all ML, -maximal consistent
sets. Further, let a,, o,, ... be an enumeration of all the wifs of the language of ML .

Definition 35. (Canonical Covering Model): The canonical covering model is defined
as the tuple M- = (M, C', V"), where
— Ci={AEM,_ 0, N Lo, EA},V,EN;
— (C={C.:ieN};
— Vip={AeEM, :pEA}
It is to be noted that (”; may be an empty set for some i € N.

Lemma S. (M, C) is a covering space.

S2
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Lemma 6. (Lindenbaum's Lemma): Let A be an ML -consistent set of wffs. Then there
. . . + o . 1
exists an ML, -maximal consistent set A" containing A.

Lemma 7. (Existence Lemma): Let A € MLC]. The following hold.

1. IfLa € A then there exists a C; € C' such that A € C;and 0. € A’ for all A" € C,

2. IfMa € A then for all C; € C, either A & C' or there exists a A' € C’ such that
aEA.

Lemma 8. (Truth Lemma): For any wiff o and A € M, o € A if and only if M, A

|=C1 a. h

Theorem 11. (Completeness Theorem): For any wif a, if |=C1 a then 1, O
Similarly it can be shown that for 6 € {P;, C,;}, F, o if and only |, L, O

Thus modal systems corresponding to groups of covering systems {P,C,}, {P,},
{C,, Cs}, {C,, P5,Cg,} are obtained. Besides, a modal system (which is a bi-modal one)
corresponding to the non-dual covering system Ct was proposed in [17] and reported in [25].
For the other covering systems the problem is open.

3.3 Rough Consequence Logics and Approximate Reasoning

Another direction of research in logic arising from rough set studies is what is known
as rough consequence logics. This constitutes a cluster of logics which are generalization
of modal logics and are based upon rough modus ponens (RMP) rules. The first paper in
this direction is [13]. Afterwards Martin Bunder published a paper [11] which generated
momentum and the main work on this topic is a joint paper [12] published in 2008. Samanta
[38] further contributed in this area. The idea in its most generality is to graft a logic on top
of a modal system S with the help of the new rules of inference RMP.

Let S be a modal system with |- as its consequence relation. New logic systems S, are
then defined using rough consequence relation |-, by the following axioms. For all sets /" of
wifs and a wif a,,

1. IffgathenI | o
2. Aa} o
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3. IfT'|fpathenl’ UA |, a.
4. RMP may be applied to obtain a step in the derivation.

A group of rules fall under the category RMP viz.

Iz o, Tl B=9, | F(oc, B)
T by 8

where F(a, B) is one of the following list of well formed formulas.

(@) Lo. = LB (b) Lo = B (¢) Lo. = MP (d) a. = LP (e) o = B (f) o = MB (g) Ma. = Lp
(h) Mo = B (i) Ma. = MB () M(a. = B) (k) L(aw = B) (/) (Lo = L) A (Mo = MB) (m) (Lo
= LB) A (Mo = MB)) A (LB = La) A (MB = Ma))

The interpretation of |5 F(a, B) when F(a, B) = Lo = LB is that L, (v(a)) & L,(v(B))
where v(a) is the interpretation of o in the universe U. Thus the RMP rule with (a) means:

“if o and B = 0 roughly follow from I" and the lower approximation of the interpretation
of a is a subset of the lower approximation of the interpretation of  in a Kripke frame (S, p),
then & roughly follows from /7.

Similarly the other cases may be interpreted.

Taking B = a the standard MP rule is obtained. Thus all the RMP rules (a) to (m) are
generalization of the classical MP rule. Also it is proved that the rough consequence relation
|- satisfies the Tarskian conditions of logical consequence viz.

— ifsets ¢ € ["then I" ||, a (overlap or reflexivity),

— iflLal; fpand Alrothen I"U 4 ||, B (cut),

— ifI'|lp a theny,,y,, ... v, [Fr @ for some v,,v,, ... v, € I' (compactness),

— ifI'|lpa thenif I" U A || a (dilution or monotonicity).

So, following Tarski, rough consequence logics are genuine logics and from the

interpretations given above, it is clear that these bunch of rough logics can be used in
approximate reasoning.

It should be mentioned that two other RMP rules are also defined in the original paper
[13] which took final shapes in [4] as follows.
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Ty o, bs, Moo= MB
|, MoAMB

and
I'Fg Ma, T, MB
[l MoAMB

This rough consequence logic grafted on S5 with the above two rules, captures the
notion of rough truth proposed by Pawlak in [27]. This logic also turns out to be equivalent
to Jaskowski’s discussive logic J proposed in 1948. Interestingly, the logic system J is
considered to be the predecessor of paraconsistent logic which is now a days an important
branch of research.

4. MEMBERSHIP FUNCTION BASED MF-ROUGH SETS

In this section we focus on the following definition of Pawlakian rough set.

Definition 36. 4 rough set is a triple <U, R, []z> where U is a nonempty set, R is an
equivalence relation on U and []z is an equivalence class with respect to the relation = of
rough equality on the power set 2 of U viz. P~ Q if and only if P = 0 and P= é, P, OcU.
4.1 Rough Membership Function

Taking the universe U as finite the notion of rough membership function was formally defined
by Pawlak and Skowron in [29] and applied to develop rough mereology [30,31].

Definition 37. Given any subset P C U, a rough membership function f, is a mapping
Card([u]R N P)

Cara’([u]R)

from U to Ra[0, 1], the set of rational numbers in [0, 1], defined by fp (u) =

forallu € U.

For our purpose, we take U as any set, finite or infinite, but assume that the equivalence
classes [] » or blocks generated by R are all of finite cardinality.

Observation 2.
1. fyu)=1ifand onlyif u € P.
2. fpu)=0ifand onlyif u € (1’_-")C
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3. 0<fyu)<1ifandonlyifu € Bd(P) = P—P.

4. fp(u) = fp(v) for uRv.

Observation 3. Each block [] » being finite, there is a fixed set of rational numbers in

1 2 -1
[0, 1] that are admissible values for the members of the block viz. {0, —, = e n—, 1},
non n

where Card( [] ») = n. This set of admissible values is determined right at the beginning when

the partition is formed in U. Under a rough membership function f, all elements of a block
receive the same value out of the set of admissible values associated with the particular block
which will be denoted by admiss-value [-]. This value shall also be referred to as the value of
the block under the rough membership function and denoted by f4([-]).

Observation 4. Some properties of rough membership functions are listed below.

If fp = fpthen P~ Q but the converse does not hold.

If P~ Q then fp(u) = 1 if and only if f,(u) = 1 and fx(u) = 0 if and only if /() = 0.
If for some P, u, 0 < fx(u) < 1 then there exists O # P such that f,, = f,.
Jpu)=1—fp(u) forall u € U.

If P C O then f, < f,, but the converse does not hold.

If fp < fpthen P < Q and Pc O, ie,Pis roughly included in Q.
7. max[0, f(u) + fy() — 1] < fono(u) < minlfp(u), fye)]:

8. max[fp(u), fy()] < fruo(u) < min[1fp(u) + fow)].

9. fPUQ(u) = Jp(u) + 1, Q(“) _anQ(U)

The results 7, 8 and 9 are proved by Yao [50].

A O

4.2 MF-rough sets
We now give the definition of an MF-rough set.
Definition 38. [16] Let = be the relation defined on 2V by P = Q if and only iffp=ro

Then, = is an equivalence relation generating a partition on 2°. An MF-rough set is a triple
<U, R, [] E> where U, R are as before and []E is a member of the quotient set 2U/E-
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Observation 5. The relation = generates a finer partition on 2V than ~. That is, the
power set 2" receives two partitions due to ~ and = such that each equivalence class []z is

the union of some equivalence classes [-]=.

Note I. When U and R are fixed, any equivalence class []z is a rough set and any
equivalence class []= is an MF-rough set.

An MF-rough set [P]= is a rough set if and only if [P]= = [P], that is, if and only if
P~ Q implies f5 = f,.

Example 5. U = {u,, u,, Uy, uy, Us, Ug, Us, Ug, Ug, Uygy Uyy> Upp}s

R = {uy, uyb, {us, uy, ush, {ugh, {ug, ug, ug, uyo}, {uyy, up,}.

Any member of 2" / ~ 1s a rough set.

Any member of 2Y/= is an MF-rough set.

Let us take the rough set with {u,, ug, u,, 1} and {u,,, u,,} in the lower approximation
and {u,} as the complement of the upper approximation. That is, the equivalence classes {u,,
u,} and {u,, u,, us} constitute the boundary. We display all the subsets of U belonging to this
equivalence class.

Lower approximation: {u,, ug, g, U} U {uy;, u;,}. Let the element taken from the
boundary set {u,, u,} be u,.

Now, elements taken from the boundary set {u;, u,, us} may be us/u,/us/u;, u,/uy, us/
uy4, us. Let the subsets obtained be denoted by B,, B,, B;, B,, B and B, respectively. Similarly
choosing u, from {u,, u,} we get sets B,, B, By, B, B,, and B,.

According to our definition this rough set is the triple <U , R, {Bl, B,,..., B, }> It
should be noted that all the three components X, R and the collection of sets {Bl , By, s 812}
are to be essentially displayed for the definition that is taken in this paper.

Now corresponding to this rough set there are two MF-rough sets viz.
<U, R, {Bla B,, B;, By, By, B9}> and <U7 R, {B4, Bs, Bg, By, By Bl2}> since fB[’ i=1,
2,3,7, 8,9 give the same rough membership function viz. fB[({u7, Ug, Ug, Uy}) = fB[({uH,
upt) =1, fB[({“s}) =0, fB[({“1: ub) = 1/2, fB[({MS»’ uy, us}) = 1/3 and fB,v Jj=4,5,06,10,
11, 12 give the same rough membership function viz. fBj({u7, Ug, Ug, Up}) = fBj({u”, Up})

=1, £y (ugh) = 0, fy Claty ws}) = 12, fy (fa, g us}) = 213,
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From the display of R one can immediately say that <U , R, {D}> where D is the union

of some blocks due to R is a rough set and also is an MF-rough set.
This example also shows that neither concept is a generalization of the other.
The following three fundamental theorems [16] are now stated.

Theorem 12. Given <U , R> and subsets P, Q of U there exists a subset A of U such that
Ja=Jp N fo (pointwise).

Theorem 13. Given <U , R> and subsets P, Q of U there exists a subset B of U such that
S5 =1p V fo (pointwise).

Theorem 14. The subsets A and B defined in Theorems 12 and 13 satisfy the properties
A=PNnQ, A=PnQand B=PUQ, B=PUO.

Definition 39. Because of Theorems 12 and 13 we are able to define rough membership
function algebra (RMF-algebra) [16] for a fixed approximation space <U , R> viz. {{fp}pcus
N, V=, fos fut where {fp} pc, denotes the set of distinct rough membership functions not
their family and —fp =1 —fp = fpe.

Theorem 15. The RMF-algebra on an approximation space <U , R> is a quasi-Boolean
algebra.

We have defined two other unary operators / and C in RMF-algebra by 7 f, = f, and

These are dual operators in the sense that —I-f, = Cf, and ~C—f, = I f,,

Theorem 16. The algebra {{fp}pcy» NV, 7,1, C, fo, fi} has the following properties:

Ify=tu,

1fp<fps

I(fp N fo) =1fp N 1]y,
Hfp=1fp,
CIfP:IfP,

L fp N e = o,

17y VfQ) =1fpV IfQ

N kD =
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Observation 6. In [1] the rough set algebra RS was proved to be a pre-rough algebra.
The RMF-algebra enhanced with / and C however does not form a pre-rough algebra since it
lacks the property that [ f, <1f, and Cf, < Cf, imply f5 < f, (see Example 6 and Note 2). This
marks a significant difference between rough set structure and MF-rough set structure. In fact,
the RMF-algebra is a model of abstract algebraic structure IA1+IA2 where it is unresolved
till now whether an = can be defined in general or not obeying the property (P.). However,
such an = can be defined in the RMF-algebra by using Godel arrow viz.

u=>v=1ifu<v,
=vifu>v

This arrow may now be extended to rough membership functions as follows.
(fp = fo) (W) = fp(u) = fo(u) for each u.

So, if fp = fo then (f, = f,)(u) = 1 for all u, i.e., fp = [, = fi, If fp > f,, for all u, then (f,
= fo)w) = fou), i.e., fp = fo =fo-

If for some u, fp(u) < fy(u) and for some v, fp(v) > fo(v) then (f, = f,)(u) = 1 for some
u and (fp = f,)(v) = fp(v) for some v. In this case a subset S of U is defined by S = {U [u] :

Tou) = fp(u)} U {U B N [v]p) 2 fp(v) > fo(W)}- So, f(u) =1 =fp(u) < fo(u) and f(v) = f(v)
= fp(v) = fo(v). Thus in any case there exists a set S & U such that f, = f, = fs. So the set
{fp} pcy 1s closed with respect to the operation =. Clearly, f, = f, = f, if and only if f, < f,,

Two examples of RMF-algebra, one linear and other non-linear, have been presented
in [35] as models of the structure IA1+ IA2. We now present here only the non-linear one.

Example 6. A eight element non-linear RMF algebra has been constructed as follows:
Let, U = {a, b, ¢, d} and let the relation be R = ({a, b, ¢} x {a, b, c}) U {(d,d)}.

Now, 27= {0, {a}, {b}, {c}, {d}, {a, b}, {a, ¢}, {a, d}, {b,c}, {b,d}, {c, d}, {a, b, c},
{a, b, d}, {a, c,d}, {b, c,d}, U}. The rough membership functions are defined by

Jo@) =0, fi,(@) = 173, fy(@) = 1/3,f,,(@) = 13, f,4(a) = 0
Jo(B) =0, f1,(b) = 173, fy(b) = 13, f;,(b) = 13, f;,,(b) = 0

Jo (€)= 0, /1,(6) = 13, £,4,(€) = 113, f111(€) = 1/3, fi(c) = 0

Jo(d)=0,f,(d) =0, fi1,(d) = 0,f,,(d) =0, f,,5(d) = 1

Fras)(@ =213, f (@) =213, fr (@) =213, Ty (@) = 113, fip (@) = 13, f;,_ (@) = 113
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Fram®) =213, f1 a(B) =213, fr0. (B) = 2/3, £, (D)= 1/3, i, (B) =173, f1 yy(B) = 1/3
Jub)=1

Sian(© =213, f, () =213, fi. () =2/3, 1, ()= 1/3, f, 4(c)=1/3,f,. p(c)=1/3
Jule) =1

f{a, b}(d) = O’f{b,c}(d) = Oaf{c, a}(d) =0, f{a, d}(d) = laf{b, d}(d) = 1af{c, d}(d) =1
Jia b, (@ = LS b0 (@) =213, fry c af(@) = 213, [y, o a(@) = 213, ffa) = 1
Jiab, 0 = Lifia 0y (0) =213, fro o 0y (D) = 213, fyy, o (D) = 213, fi/(D) = 1

f{a, b, c}(C) = laf{a, b, d}(c) = 2/3=f{a, c d}(C) = 2/39f{b, c d}(c) =2/3, fc)=1

f{a, b, c}(d) = Oaf{a, b, d}(d) = 1af{a, c, d}(d) = laf{b, c, d}(d) =Lf/d)=1

We have, here, eight distinct rough membership functions

oSy Lrap S vy o ay Fiav. ey Jav.ap Jub-

It can be easily verified from the lattice whose Hasse diagram is shown in Figure 6 that

“{ Je sJiap Jiay Sia oo Sia ap Jia . ey Sia b, ap Jubs N V. 1L G, Jo,fy} is a RMF-algebra which
satisfies all the axioms of the structure IA1 + A2, where —, [ are given by

- f0 f{a} f{d} f{a,b} f{a, d} f{a, b, c} f{a, b, d} fU
fU ﬂa, b, d} f‘{a, b, c} f‘{a, d} f‘{a, b} f‘{d} f‘{a} f(.b

f;’) J({a} J({d} J({a, b} J({a, d} J({a, b, c} J({a, b, d} fU
f@ f@ f{d} f@ f{d} f{a, b, c} f{d} fU
C f(IZ) f‘{a, b, c} f‘{d} f‘{a, b, c} fU f‘{a, b, c} fU fU
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fu
Flap,c} fiab.dy
frapy 1 - fa.ay
fray fray
fo

Fig. 6: Hasse diagram(non-linear RMF algebra).

Now, in this RMF-algebra the binary operation = as mentioned above gives the
following table.

= Jo Siay Siay Javy Jaay Jave Savna Ju
fo v N N N N N S S
Jia) o oo o S o Nl S v
Jiay Jo Jiabey Ju Jiabey Ju Jiabey Ju Ju
Jia, by Jo Siay Jiay Ju Jaay Ju Ju Ju
Jia ay Jo Siay Jiay Jiave Ju Jiabey Ju Ju
Sane | Jo Siay Jiay Jaw, Jaa Ju Jiava, Ju
Sana| Jo Siay Jiay S, Jaa Jase Ju Ju
Ju Jo Siay Jiay S, Jaa Jase Sasna Ju

Note 2. In the above example, we can see that [ f,,, =1 f,, ,, and C f,,, = C [,

S0, 1f i, py <1fiyand Cf,, , <Cf,, butf, , X fia- Hence, this example is an instant
where the property /u < Iv and Cu < Cv imply u < v, for all u,v, does not hold in a RMF-
algebra.
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Theorem 17. In the algebra ({fp}pc y» N, V., 7, 1, C, fo, f} let a binary relation p be

defined by fppf, if and only if 1 fp = 1 f, and C f» = C f,,. Then p is a congruence relation.

Theorem 18. The quotient algebra ({ fp}pcu/p, A, Y, Neg,Z,C,[fol,, [fulp})is
isomorphic with the rough set algebra RS under the mapping y([f,],) = [A]l~ where [f,], X

Ul, = s A fely = Upls fo = fi A T

Uy Y Usly = U4 V S5l = Vol Jo =S4 V I

Neglf,1, = [/, and 11f ], = [L1,], equivalently (C[f,], = [C f,],)-
4.3 Alogic for MF-rough sets

A logic for MF-rough sets has been developed in [16] using the = (Gddel arrow
extended over rough membership functions) discussed in Observation 6.

The logic £,z The alphabet of the language consists of propositional variables: p,,
P, --., connectives: =, A, V, =, I, C [the same symbols are used abusively in the algebra and
logic]. The wifs are defined in the usual fashion.

Axioms for £,

—_—

a=>""q

- o= o

anp=p

aAB=>PAa
aAPBVY=(@AB) V(@AY
@AB) V(@AY >aA VY
lo =«

fo = Ilo

Ioo A IB = I(a A B)

Clo. = lo

I(a = ) = (Ja = IB)

—lo V o

e A T o

—_ = =
o= o
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Rules of inference:

! o, =P
' B
5 a=pB, =y
' o=y
3. ¢
p=a
P =d
—|B:>—|(X
5 a=>pB,a=7y
' a=>PBAy
6 avp, o=y, B=>y
' Y
. _9=B
C Ta=IB
g, —
o

The interpretation is given in a domain <U , R> which is an approximation space such

that the equivalence classes of R are of finite cardinality.
The interpretation of a wif is defined by a valuation function v given by:

v(p,) 1s an arbitrary MF-rough set f,,
v(—a) is ~v(a),

v(la) is Iv(a),

v(Ca) is Cv(a),

v(a A B)is v(a) A v(B),

v(a vV B)is v(a) V v(B),

v(a = B) is v(a) = v(P) where the last = is a Godel arrow extended over rough
membership functions.
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A wff a is valid in <U , R> if and only if v(a) = f,, for all valuations v in <U , R> and is
universally valid if and only if it is valid in all domains.

Theorem 19. [/6] The formal system L,,. is sound with respect to MF-rough set
semantics i.e. if a is a theorem in L, then o is universally valid.

Note 3. It is not claimed that this set of axioms and rules form a minimal set. Nor do we
claim completeness. Modal axioms K, T, S, B are all present in the above logic but remember
that the base logic is quasi-Boolean instead of Boolean.

In a recent paper [23] some applications of MF-rough sets have been discussed.

5. ROUGH SET MODELS OF VARIOUS ALGEBRAS

In Section 2, we have presented a number of algebras based on qBa. Amongst them, some of
the algebras such as tqBa, tqBa5, A1, IA2, IA3, Systeml algebra, SystemlI algebra etc. are
stronger than qBa but weaker than pre-rough algebra. The abstract pre-rough algebra has a
rough set model [1] which is described at the beginning of Section 2. Now a question may be
raised: how can we construct proper set theoretic rough set models of these algebras which
are basically weaker than pre-rough algebra? The phrase ‘proper set theoretic rough set
model’ means that it should be a set model and should not reduce to a pre-rough algebra. It is
to be noted that for any approximation space <U , R>, <2 Yyme, M, L, —, 1[0 l~, [U]§> becomes
apre-rough algebra and hence it satisfies more axioms than the axioms present in the aforesaid
algebras. In [43,44] the present authors have made an effort on this issue. First, we observe
that if 2" is taken in place of 2Y/2 (that means ordinary set is considered in place of rough set
[Pl~), <2U, r, LI> fails to form a lattice as P11 Q # Q I P. So, we cannot proceed further
using these operations I and LI. On the other hand, if set theoretic intersection and union are
considered in place of M and LI respectively then <2U, N, U, —, 0, U > immediately turns

into a Boolean algebra instead of a quasi-Boolean algebra as —P usually means P°. To
overcome the situation we follow Rasiowa [34]. In [34], a representation theorem for quasi-
Boolean algebra was presented. We focus our attention on this representation theorem. The
notions of quasi-complementation and quasi-field of subsets of a set U have been discussed in
that book. Let U be a non empty set and g : U — U be an involution i.e., g(g(«)) = u, for all
u € U. Clearly, every involution g is a bijective mapping. The quasi-complementation — is
defined by —P = U — g(P) = g(P)", for each P C U. Then, a collection Q(U) of subsets of U,
containing U and closed under set-theoretical union, intersection as well as the quasi-
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complementation —, <Q(U ), N, U, =, 0,U > is called a quasi-field of subsets of U. It has

also been shown that quasi-field of sets are typical examples of qBa, in the sense that every
quasi-Boolean algebra is isomorphic to a quasi-field of sets. In this way, for a non empty set
U, <2U, N, U, =, 0,U > is a gBa, where — is the quasi-complementation, i.e, =P = g(P)". It
is to be noted that for an arbitrary involution g on U, the quasi-complementation and

complementation (set-theoretical) of a subset P of U are not the same i.e., ~P(= g(P)") # P*
(see Example 9). Due to this fact, again a problem arises to define /. If in a generalized

approximation space <U, p>, I P=P, is taken then CP=—/ —|P=g(g(P)C ) P in
=

general. In fact, P, and P° are dual approximations in a generalized approximation space

<U , p> with respect to the set theoretical complementation whereas [ and C are dual operations

with respect to the quasi-negation — in the algebras discussed in Section 2 . However, we have

solved the issue by defining a new approximation space <U , pg> from a generalized

approximation space <U , p>, U being a non empty set and p being an arbitrary relation on U

and g, an arbitrary involution on U. Using p®, a pair of lower-upper approximations has been
defined to obtain proper set theoretic rough set models of some of the algebras mentioned in
section 2. Moreover, a necessary and sufficient condition is obtained when lower and upper

approximations P, and P’ ina generalized approximation space <U , p> satisfy the notion
of duality with respect to the quasi-complementation.

5.1 A g-approximation space (U, p®) and inter-relations between p® and p

The notion of quasi-complementation has been discussed above. Proposition 5 below
describes some of its properties.

Proposition 5. [34] Let g : U — U be an involution, i.e., g(g(u)) = u, for all u € U. The
following results hold.
g is a bijective mapping on U.
g(g(P)) =P, forall P C U.
2(PU Q) = g(P) U g(Q), for all P, 0 C U
&P U Q) =g(P)ng(Q), forall P,Q C U.
P = g(P)" = g(P°), forall P C U.
—~=P=P, forall PC U.

S i e
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7. —(PUQ)=—PU—Q,forallP,Q C U.
8. —(PUQ)=—PN~-0,forallP,0C U.

As our primary aim is to achieve a pair of lower-upper approximations so that they
are dual approximations with respect to the quasi-complementation, we have defined a new
approximation space [43,44] in the following way.

Let <U , p> be a generalised approximation space and g : U — U be an involution. A
binary relation p® on U is defined as follows:

for any two elements u and v in U, up®v if and only if g(u)pg(v). (N

We call <U , p¢ > a g-generalized approximation space or simply, a g-approximation
space.

As g is an involution on U, p can be redefined with respect to p® as follows:

for any two elements u and v in U, upv if and only if g(u)p®g(v). 2)
As proofs of the following propositions are available in [44], we only state them here.
Proposition 6. The following statements are equivalent in a g-approximation space

<U, pg>.

P =p.

upv implies g(u)pg(v), Yu, v € U.
2(u)pg(v) implies upv, Vu, v € U.
up®v implies g(u)p®g(v), Vu, v € U.
g(u)p®g(v) implies up®v, Yu, v € U.
pCph

A N Sl

p® C p.

Letp,={v € U:upv} and p®, = {v € U: up®v}. As g is an involution, it is obvious that
Petetuy = Pu a0d Py = P Tor all u € U. But, there is no subset inclusion relation amongst
Pus Py P and p,) in general. However, the following results show how they are related
depending upon p and g.

Proposition 7. The following statements are equivalent in a g-approximation space
<U , p¥ >
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A

P = ng(u) (P, = Pguy)» Vu € U

up®v (upv) implies g(u)p®v (g(u)pv), Yu, v € U.
g(u)p®v (g(u)pv) implies up®v (upv), Vu, v € U.
p5 C ng(u) (P, © pg(u))’ Vu € U.

ng(u) Cpf (pg(u) Cp) Vuel.

Pu= Py (P = Pyw)» VU € U.

Proposition 8. In a g-approximation space <U , p? >, Py = &%) and ps, = g(pyu)s

Yue U.

Proposition 9. [44] In a g-approximation space <U , p? > the following results hold.

1
2
3.
4

p® is reflexive if and only if p is reflexive.
p® is symmetric if and only if p is symmetric.
p® is transitive if and only if p is transitive.

p® is serial if and only if p is serial.

From the above proposition it follows that p® is an equivalence relation on U if and only

if p is so.

Proposition 10. If p* (p) is reflexive and transitive and p$, = p,, (P, = Pyuy)» Vit € U

then p® = p.
Remark 4.
1. The reflexivity and transitivity of p*(p) in the above proposition are necessary. If

we drop any one of them then p® and p may not be equal. Example 7 is considered
to show it.

Example 8 shows that the converse of the above result is not true even for an
equivalence relation p®.

Example 7. Let U = {a,, a,, a;, a4, a5, agy and g : U — U be an involution defined by
gla)) = ay, g(ay) = ag, g(as) = as, glay) = ay, glas) = as, glag) = a,.

Letp = {(ala al): (612, az), (613, 03), (Cl4, a4)a (aS, aS)a (aéa aﬁ), (ala 614), (a47 al): (a2, aﬁ)’ (aﬁa
az)a ((13, (15), ((15, az)} and G = {((13, (13), (aSa as)a ((13, (11)}. Then pg = {(ala al)’ (a25 az)a ((13, (13),
(ay, ay), (as, as), (ag, aq), (a,, a,), (ay, ay), (ay, ag), (ag, ay), (as, as), (as, ag)} 1s reflexive but not
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transitive and o* = {(a3, @;), (as, as), (a3, a,)} is transitive but not reflexive. Here, p = p%,)

and %, = o%,, forallu € Ubut p* # p and ¢* # c.

Example 8. U and g are the same as stated in Example 7.

Let p = {(ala al): ((12, (12), (a3a a3): ((14, a4), ((15, (15), (a6: a6)a (ala 04), ((14, al)}~ Thena Pg =
p and p® is an equivalence relation on U but p; = {u eU: azRgu} ={a,}# pi( )~ )

a

The quasi-complementation and set theoretic complementation of a set P, i.e., 7P =
g(P)* and P* are not the same even when p is an equivalence relation, p = p® and p, = p,,, for
all u € U. The following example establishes this.

Example 9. The same U and g as mentioned in Example 7 have been considered for this
case also.

Let p= {((11, al), (612, (12), ((13, (13), ((l4, a4), ((15, (15), (a6’ aé), (al’ (14), ((143 a1)> ((12, aé)a (a6,
a,)}. Then, p® = p, p* is an equivalence relation on U and p, = p,,, forallu € U. Let P = {a,,
ay, a4}' Thena pP= g(P)c = {a29 as, aS} # PC = {613, as, a6}'

5.2 g-lower and g-upper approximations in a g-approximation space and rough set

models of some algebras

In this subsection a pair of lower-upper approximations in the g-approximation space <U , p¥ >

will be discussed. These lower-upper approximations are dual with respect to the quasi-
complementation. Their properties and rough set models of some of the algebras stated in
Section 2 will be presented.

o> the g-lower

Let <U , p° > be a g-approximation space and P be any subset of U. P

approximation of P and Fg, the g-upper approximation of P, in the g-approximation space
<U , p¥ >, are defined by:

Bgz{ueU:png}

and

P :{ueU:pgg(u) ﬁg(P)i@}
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Now, we present some propositions and theorems without their proofs. All of these are
available in [44]. Proofs of new results, of course, are included.

Proposition 11. P, and P° are dual approximations with respect to the quasi-
complementation defined through g.

Proposition 12. P, and P are respectively Pawlakian lower approximation of P in

<U , p¥ > and Pawlakian upper approximation of P in <U , p>.

Remark 5. 1t is noticeable from Example 13 that I_’g # I_’p and P* = P’ , even when p

is an equivalence relation on U. Hence, for a subset P of U, <£g, ?’g> is different from

> =g

<1_)p, 1_)p> and <1_)pg , P > In fact, P, is Pawlakian lower approximation of P in <U , p® >
and P° is Pawlakian upper approximation of P in <U , p>.

Note 4. In Proposition 12 we see that P* =P". On the other hand, one may define P,

as Pawlakian lower approximation of P in <U , p>, ie, P, =P, . Then P* (considering dual
with respect to the quasi-complementation —) must be Pawlakian upper approximation of P in

_pg

< >, 1.€., P =pP".

It has been mentioned earlier that P, and P* are dual approximations with respect to

the quasi-complementation. But P, and P’ are not so. In fact, they are dual with respect to
set theoretic complementation. We have established here a necessary and sufficient condition
for a given involution g on U, P, and P’ dual approximations with respect to be quasi-
complementation defined through g.

Theorem 20. Let <U , p> be a generalised approximation space and g be an involution

on U. Then for any P C U, P, and P’ are dual approximations with respect to quasi-

complementation defined through g if and only if p = p®.

Remark 6. 1t is to be noted from Example 9 that the quasi-complementation and
complementation of a set P i.e., =P and P are not the same even when p = p®. If they were the
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same, the above theorem would not have any significance at all. When p = p*, P, =P and

P* =P°. Hence all the properties of lower/upper approximations with respect to p as well as

p® coincide. Yet there remains one significant point. The complementation and quasi-
complementation do not coincide yet the approximation operators are dual with respect to
both of them.

However, when p # p®, <P R ?’g>¢<£p, Fp> and <£g, ﬁg>¢<£pg, P’ >, still the

—8
following results hold.
Proposition 13. /n a g-approximation space <U , p¥ >, the following results hold.
. U,=U and 0° =0.

2. IfPCQCUthen P,cQ and P*cQ".

3. PnQ =P,NQ and PUQ" =P V0", forall P,Q C U.

The counterpart of the modal axiom K in the form — Py Qg c ﬁ(f o ) ) Qg does not

hold in general. The following example shows this.

Example 10. The same U and g in Example 7 are considered for this example. Let p =
{(ay, a)), (a), ay), (a4, ay), (a3, ag)}. Then, p* = {(ay, ay), (a4, @y), (@}, ay), (a3, ay)}. Let P= {a,,
as, a,} and Q = {as, a4 }. Then, ﬁqug = {a,, a,, a3, as, a5} and ﬁ(fg)ugg = {a,,

a,, ds, ag}. Thus, Mg o4 ﬁ(Bg)qu.
Proposition 14. 4 sufficient condition so that ﬂg = —|(£g ) qu holds for all P,
O C Uis that p = p°.

Proof. Letu € ﬂg . Then, p® € g(P)" U Q. Two possible cases are:

L. uCg(P,)

2. ”$g(£g)
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For the second case, it is obvious that u ( g(fg ))c and hence u € —|(£ . ) U Qg. For

the first case, u = g(v) where v € P,. Then, p% C P and hence g(p%) C g(P). Then by
Proposition 8, p, € g(P) [as u = g(v)]. Since p = p%, so, p, = p$ and therefore p%, C g(P). This
gives, p¢ N g(P) = 0. As p%, C g(P)° U Q so, p%, C Q and therefore u € Qg C —|(£g ) ugg.

u —

Hence the result follows.
Remark 7.
1. When p = p% P, and P°  become P, and P’ respectively. Then
— Py Qg c ﬁ(I_Dg ) ugg turns into = PU Qp c ﬁ(fp ) ugp, not identical
with Mp c (1_’p )C U QD (the counterpart of the modal axiom K in
Boolean base)

2. Whether p = p® is a necessary condition or not for holding
ﬁPqu gﬁ(}_’g)ugg is unsolved.

The following example shows that the counterpart of the modal axiom D: P, pP°
does not hold for a serial relation p®.

Example 11. U and g are the same as stated in Example 7. Let p = {(a,, a,), (a,, @), (a3,
a,), (a,, ay), (as, as), (aq, a,)} be a serial relation on U. Then, p* = {(ay, ay), (a4, a,), (a3, ay),
(ay, a,), (as, as), (a,, ag)} is a serial relation. Let P = {a,, a,, as}. Then, P, = {a,, a3, as, a¢}

and Fg = {a], as, aé}. Thus, £g Zﬁg-
Theorem 21. In a g-approximation space <U , p¥ > P, C P® holds for all P CU if and

S —g —

only if p5 Nnp, #0, forallu € U.

Proof. Let us assume that P, C P* holds forall PC U. Letu € U. Then, particularly,
ﬁg  p¥ holds. This gives,u € {vE€ U:p, N p% =0} [asu E ﬁg and by Proposition 12]
and hence p% N p, # 0.

Conversely, let p; Np, #0, forallu € U. Letu € P,. This implies p§ C P and hence
p N p, Cp, N P. This gives, p, N P # 0 [as p& N p, # 0]. Hence, u € P°.
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Remark 8. p$ Np, #0, forallu € U, implies that p¥(p) is a serial relation on U. But the
converse is not true, i.e., there exists a serial relation p%(p) so that p5 Np, # 0, for some u €

U. In Example 11, pfz ={a6} and p,, :{al}. So, pi Np,, =0. Thus, the condition in
Theorem 21 is stronger than a serial relation. By the following Example 12, it is further noted
that p$ Np, #0, for all u € U does not imply p = p*.

Example 12. U and g are the same as stated in Example 7.

Let p = {(a,, ay), (ay, a3), (a,, ay), (a5, a3), (a4, ag), (as, ,5), (ag, ay)} be a serial relation
on U. Then,

pg = {(a49 a6)7 (a6’ Cl3), (a67 al)’ ((13, a3)7 (al’ a2)9 (057 aS)ﬂ (aZ’ 613)} iS a Serial relation on U.
NOW’ pa1: {aZ}’ paz = {a3’ a4}’ pa3: {a:’)}’ pa4 = {aé}ﬂ pa5 = {as}’ pa6 = {a3} and p%’;l = {az}’
p%, = a3}, ply = Aash, P, = {agh, p5g = {as}, p5, = {ay, a3} Thus, p§, N p, # 0, forallu €
Ubut p # p®.

Proposition 15. If p® is reflexive in a g-approximation space <U , p¥ >, the following
results hold.

1. U*=U and 0,=0.
2. P,CPC P forallPCU.
It is known to us that Pawlakian lower-upper approximations P, and P’ satisfy the

—p
counterpart of the modal axiom B: (}_)p) c P, forall P C U, when p is a symmetric relation

7 \g
on U. But, (1_’ g) < P does not hold even for an equivalence relation p® on U (see Example
13). A necessary and sufficient condition is presented in Theorem 22 below so that the
counterpart of the modal axiom B holds.

Theorem 22. Let p® be a symmetric relation in a g-approximation space <U , p° > Then
T \g
for any subset P of U, (Eg) C P holds if and only if p* = p.

Proof. Let p° = R. Then, <}_’ 2 IT’g> = <}_’p, }_’p> and consequently for any subset P of U,

4
(£ ) C P holds as p is symmetric relation on U. Conversely, let us assume that (£ g) cP

4
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holds, for any subset P of U. We shall show that p C p®. If p = 0 then p® = 0 and hence the
7 \8&
result follows. Let upv. Let P = p2. Then, (p_vgg) cpéie, {z eU:p, mﬁg # (/)} cps.

Now, ﬁg ={weU:pfof gpﬁ}. This gives, v € ﬁg. As upv so v € p, and hence p, N ﬁg
T \8 T\ 8 T\ 8
# (. Then from definition of (ﬁg) , u€E (ﬁg) . As (ﬁg) C p% sou € p®. This gives,

up®v as p? is symmetric. Thus, p € p. Using Remark 6, p* = p.

Remark 9. By the above theorem it is clear that the counterpart of modal axiom B is
possible with respect to g-lower and g-upper approximations only when p® = p. Indeed, in
that case, g-lower and g-upper approximations are the same with Pawlakian lower and upper
approximations in the approximation space <U , p>. But one gain, in this case, is that P, and

g . =P L . . .
P, ie, P, and P are dual approximations with respect to the quasi-complementation.

From Example 9, it is further noted that complementation and quasi-complementation are not
the same even when p is an equivalence relation.

Proposition 16. If p® is transitive in a g-approximation space <U , p¥ > then for any
T— 0\ —
subset P of U, P, g(fg) and (pg) - P* hold.
—E

g
The following example is considered to show that (B g) cP ¢ may not hold even for
an equivalence relation p® in a g-approximation space <U , p° >

Example 13. U and g are the same as mentioned in Example 7. Let p be an equivalence
relation on U which partitions the set U into the subsets {a,, a;}, {a,}, {a,, as}, {a;} of U.
Then, the equivalence relation p® partitions the set U into the subsets {as, a,}, {a,}, {a4, as},

g
{a,} of U. Let P= {a,, a3, az}. Then, P, = {a,, a3, a5} and (Eg) ={a,, a,, ay, as, ag} and

N _
therefore (Bg) ¢ Eg = P, Further, we see that £g ={a,, a;, as} # Bp = {as} and Pt =

—pt . . =P
{a,, ay, as, a5, ag} # P’ = {a,, a;, ag}. It is also noticeable that P, and P are not dual

approximations with respect to the quasi-complementation as (—|P) ={a,,as,as} # ﬁ(l_’p)
—FP
p
={a,} and (_‘P) ={ay, as, a5} # _'(Bp) ={ay, a3, ay, as, ag}.
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Theorem 23. Let p® be an equivalence relation in a g-approximation space <U , p¥ >

g
Then for any subset P of U, (Bg) C P, holds if and only if p* = p.

The following example establishes that —.(I_Dg)ul_Dg = U may not hold even for an
equivalence relation p® with p® = p.

Example 14. U, g and p are the same as stated in Example 8. Let P= {a,, a,, a;}. Then
P, ={a,, a;} and hence ﬂ(fg)uﬁg ={a,, a,, ay, a,, a5} # U.

We now state a necessary and sufficient condition so that —u(P )u P, =UVPCU,

—& g
holds.

Theorem 24. Let p*(p) be an arbitrary relation in a g-approximation space <U , p? >

(generalized approximation space <U , p>). Then for any subset P of U, —|(1_’g)u]_9g =

U(_‘(}—DP)UBP - U) holds if and only if p, = pg(u) (Pu = Pg(u)), forallu € U.

Proof. Let p$, = p%,), forallu € U. Let P be any subset of U and v be any element of U.
If v € ~(P,), the result follows. So, let v & —(LP,) = U— {g(u) : p%, C P}. This gives, v €
{g(w) : p}, C P}. Then, v = g(#) where p} € P. As p§ = p%, [by the hypothesis], so p, € P
and hence g(t) = v € P,. Thus —|(1_3 o ) U P, = U, for any subset of P of U. Conversely, let

ﬁ(l_’g)u]_’g = U, for any subset P of U. Let u € U. It is to be shown that p?, = p%,,. Let P
= phuw Then, P, = {v:p% C p%,}. We now claim that u € P,. If not, u € (£,) as
—|(£g)u£g = U. Then, u & {g(v) : p§ C p%,}. As g is bijective on U, let u = g(2). Then, p%

Z P 1€ Pl € Pl [2 = g(w) follows from u = g(z) as g is an involution], which is a
contradiction. Thus, u € P, = {v: p§ C p%,,} and hence p§ C p%,.

Using Remark 7, p§, = p%,,
Similarly, the other part can be proved.

By Remark 7, p§, = p%,, if and only if p, = p,,. So, the above Theorem 24 holds good
for any one of the conditions p$ = p%,, and p, = p,,.
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It has been mentioned earlier that for any relation p, P = P holds. As there is no fixed
subset inclusion relation between P, and P, until p = p?, the four possible cases (when
P, # P, ) that may occur are presented in Example 17 on page 301-302.

In order to view the important results of this section at a glance we refer to Table 4.
Rough set models for stqBa, stqBaD, stqBaT, stqBaB, tqBa, tqBa5 and 1A1:

For a non empty set U, by Proposition 5, <2U, N, U, =, 0, U> is a qBa, where 2V is the
power set of U, g is an involution on U and —P = g(P)" .

Rough Set model for a stqBa: Let <U , p¥ > be a g-approximation space. Then,
<2U, N, U, -, 0,U > is a qBa, where —P = g(P)", for all P € 2". We now define /P, for all
P C Uas IP = P,. Then by Proposition 5 and Proposition 13, <2U, N, U, =, 1,0, U> isa
stqBa.

Remark 10. The above model of stqBa is also a model for System0 algebra.

Rough Set model for a stqBaD: Let p® be a relation on U so that p$N p, # 0, for all u
€ U. Then, by Proposition 5, Proposition 13 and Theorem 21, <2U, N, U, —, 1,0, U > 1sa
stqBaD.

Rough Set model for a stqBaT: For a reflexive relation p® on U, by Proposition 5,
Proposition 13 and Proposition 15, <2U, N, =, 1,0, U > is a stqBaT.

Rough Set model for a stqBaB: For a reflexive and symmetric relation p® on U with p®
= p, by Proposition 5, Proposition 13, Proposition 15 and Theorem 22, <2U, N, U, - 1,0 U

is a stqBaB.
Remark 11. By Proposition 14, the algebraic counterpart of the modal axiom K also

holds in the above model of stqBaB as p® = p. Thus, the above model is also a rough set model
for stqBaB with modal axiom K (quasi-Boolean base).

Rough Set model for a tqBa: For any reflexive and transitive relation p® on U, by
Proposition 5, Proposition 13, Proposition 15 and Proposition 16, <2U, N, U, =, 1,0,U) is

a tqBa.
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Rough Set model for a tqBa5: For any equivalence relation p® on U with p* = p, by
Proposition 5, Propositions 13, Proposition 15, Proposition 16 and Theorem 23,

<2U, N, U, -, 1, C,0, U> is a tqBa5, where /P = P, =P, and CP = P =P
Remark 12. By Proposition 14, the algebraic counterpart of the modal axiom K also

holds in the above model of tqBa5 as p® = p. Thus, it is also a rough set model of tqBa5 with
modal axiom K.

Rough Set model for a IA1: For any equivalence relation p®on U with p¥, = p%,, for
all u € U, by Proposition 5, Proposition 10, Propositions 13, Proposition 15, Proposition 16,
Theorem 23 and Theorem 24, <2U, N, —, I, C, 0, U> is a IA1, where /IP=P P
andCP=P°=pP".

Remark 13. 1t has been shown in [43] that the algebraic counterpart of the modal axiom

K holds in a IA1. In the above model of IA1, it also holds (by Proposition 10 and Proposition
14).

Table 4: Some results on the two lower-upper approximations

Nature of p Result
p is arbitrary but p # p®

(1) P, and P® are dual with respect to the
quasi-complementation.

@) P*=pP"
(3) 2PUQ (P, )uQ,

(4) P, and P’ are not dual with respect to
the quasi-complementation.

) ; — ¢ ~
p is arbitrary but p = p (1) P, =P,
@) P =P
() 2PUQ (B0,

(4) P, and P’ are always dual with respect

to complementation as well as quasi-
complementation.
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p is a serial relation with p, N p = 0, for at
least one u € U.

(1) P, < P’ holds forall PC U

(2 P, < P does not hold for at least one

PCU

p is a (serial) relation with p, N p® # 0, for
allu € U.

(1) P, < P" holds forall PC U

2 P, c P* holds forall PC U

p is reflexive but p # p®

(1) P,cPcP* =P

(2) P and P are not dual with respect to
the quasi-complementation.

(3) P, C P but there is no fixed subset

inclusion relation between P, and P,. See
Table 5 and Figure 7.

p is reflexive and p = p®

(1) P,=P,cPc P =P

(2) P, and P’ are always dual with respect

to complementation as well as quasi-
complementation.

p is symmetric but p # p®

7T \P
(1 () cp

@ (P,) 2P

p is symmetric and p = p®

m(e,) cp

p is transitive

J— p J—
(1) P, (P,) and (P") <P’

=p
p

2) P (P )g and

—&
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p is equivalence but p # p®
P

@ (P,) 2 P,

p is equivalence and p = p® —z
() (P,) € P

—g) = =¢

m(p,) cp

p is any relation with p, = p,, (1) — ( P, ) UP, =U

2) -(P,)uP, =U

—8

5.3 Rough set models of some Implicative Topological quasi-Boolean algebras

In section 2 we have presented a number of Implicative Topological quasi-Boolean algebras
where implication has been imposed satisfying the property (P. ). Besides, three intermediate
properties IP1, IP2 and IP3 are included separately to IqgBaO before adding the topological
properties corresponding to the modal axioms T, S, and S5. Hence, for a proper set theoretic
rough set model of the above mentioned algebras two important steps have to be developed.
First, an investigation for suitable operation that corresponds to = is needed. Second, a pair of
lower-upper approximations has to be constructed so that they are dual approximations with
respect to the quasi-complementation and satisfies exactly one property of IP1, IP2 and IP3.
The first has been achieved in two different ways. Boolean implication P = Q(= P° U Q),
in one way, serves the purpose smoothly. On the other hand, g image of Boolean implication
g(P = Q)(= P =, Q) also fulfils the property (P.). Thereafter, a study has been made to find
some relations between them. For the second issue, a pair of lower-upper approximations,
dual with respect to the quasi-complementation, has been constructed that fulfills the property
IP1. Using the pair, rough set models for the chain of algebras IqBal, IqBal,T, IqBal,4 and
IqBal,5 have been developed in [44].

Rough set models for IqBaO, IqBaT, IqBa4 and IqBa5

Rough Set model for IqBaO: Let <U , p¢ > be a g-approximation space. Now,
<2U, N, U, =, 0, U> is a qBa, where —P = g(P)", for all P € 2Y. We define = in 2Y as

follows

P=>Q=PUQ,forall P,Q € 2".
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Then, it is obvious that P = Q = U if and only if P € Q and consequently
<2U, N, U, =, =, 0, U> becomes a IgBa. We now define IP, for all PC UasIP= P,. Then

by Proposition 11 and Proposition 13, <2U, N, U, =, o, 1,0, U> is a IqBaO.

Remark 14. Defining P, =P, P* =I_’pg (by Note 4) it can be shown that
<2U, N, U, =, = 1,0,U > becomes a different model for IqBaO with respect to /; where
ILP=P,.

Rough Set model for IqBaT: For any reflexive relation p® on U, by Proposition 11,
Proposition 13 and Proposition 15, <2U, N, U, =, o, 1, 0, U> is a IqBaT.

Similarly as Remark 14, for any reflexive relation p®, <2U, N, U, =, -, 1,0,U >

becomes a different model for IqBaT with respect to /, where /;\P = P, .

Rough Set model for IqgBa4: For any reflexive and transitive relation p® on U, b
Proposition 11, Proposition 13, Proposition 15 and Proposition 16, <2U, N, U, =, 1,0, U i,
is a I[qBa4.

Similarly as Remark 14, for any reflexive and transitive relation p®,
<2U, N Y, =, 1,0, U > becomes a different model for IqBa4 with respect to /; where

LP=P,.

Rough Set model for IqBa5: For any equivalence relation p® on U with p® = p, by
Proposition 11, Propositions 13, Proposition 15, Proposition 16 and Theorem 23,

<2U, N, U, =, —, 1, C,0, U> is a IgBa5 where /P = P, =P and CP = P =P

Note 5. As for any equivalence relation p* on U with p* = p, [|,P = P, = P, = IP and
therefore the models <2U, N, U, =, 1, C, 0, U> and <2U, N, Y, =, 1, C,0, U>
are the same for IqBa5.

On the implications = and =,

We shall discuss about the implications = and =>,. Some results on these two implications
will be presented below.
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Proposition 17. Let g be an involution on a non-empty set U and P =, Q = g(P = (),
where P= Q = P°U Q, for all P, Q € 2°. Then P=, Q = —P U g(Q), for all P, Q € 2.

Proof.
P=,0=gP=0)
=g U Q)
= g(P°) U g(Q) [by Proposition 5]
=—P U g(Q) [by the definition of —]

Proposition 18. P =, QO = U ifand only if P C Q.
Proof.
P=0=UsgP=>0)=U

@ g(P=Q)=g(U)[as g(U) = U]
< P = Q = U [by Proposition 5]
< P C Q [by the property of Boolean implication]

Remark 15. From Proposition 18, it is clear that if P € O then P = QO and P =, Q are the
same and equal to U. But, when P & Q then P = Q and P =, Q may not be the same.

Example 15 is an instant for this.

Example 15. U and g are the same as stated in Example 7. Let P = {a,, a,, a;} and O =
{aza (14, as}' ThenP = Q = PC U Q = {(12, a4a (15, a6} # P $1 Q:g(P = Q) = {ala (,12, (15, a6}'

Proposition 19. Let g be an involution on a non empty set U. Then
{(P=>Q:P,Q€ U} ={P=>,0:P,Q€ U}
Proof: LetP=>Q € {P= (Q: P, Q € U}. Then,
P=>0=P UQ
=g(g(P))" U g(g(Q)) [by Proposition 5]

=g(P)=>8(Q) S {P=> 0P, 0€U}
[by Proposition 17 on page 299]

Thus, {P=>Q:P,0E U} C {P>,0:P,0E U}
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Similarly, it can be shown that {P =, Q: P,Q € U} = {P > Q: P, Q € U} and hence
{P=>0:P,0€U}={P=>0:P, Q€ U}

If we define implication as P =, Q = g(P = Q), for all P, Q € 2Y then
<2U, N, U, =, -, 1,0, U> and <2U, N, U, =, =, 1, 0, U> become different models
for IqBaO/IqBaT /IqBa4/IqBa5 with respect to the implication =, as shown in Example 16.

Example 16. Let U = {a,, a,} and g be an involution on U such that g(a,) = a, and g(a,)
=a,. Let p be any binary relation on U. Then, by Proposition 11, Proposition 13 and Proposition
18, <2U, N, U, =, 1,0, U> and <2U, N, U, =, = 1,0, U> are two models of IqBaO.
Now, the implications = and =, on P(U) act as follows:

= 0 {1} {2} U >, 0 {a} {a,} U
0 U U U U 0 U U U U
{a;} {a)} U f{ayy U {a;y {a)}  Uda} U
{a,} {a)} {ay} U U la)} {ayy {ayy U U
U 0 {a} {a,} U U 0 {a} {a,} U

As {a,} = {a,} # {a,} =, {a,}, the above two models of IqBaO are different with
respect to = and =,.

Similarly, it can be shown that <2U, N, Y, =, -, I/1,0,U > and
<2U, N, U, =, I/Il, 0, U > are two different models of IqBaT//IqBa4/IqBa5 with
respect to = and =,.

Rough set models for IqBal,IqBal, T, IqBal,4 and IqBal,5: a new pair of approximations
It is observed from Example 14 that =(P,) U P, # U where P = {a,, a,, a5}, p* is an

equivalence relation on U with p* = p. Thus P, and P® do not fit with IP1. We have defined
in [44] a new pair of lower and upper approximations so that it fulfils [P1. Rough set models
for IgBal, IgBal,T, IqBal,4 and IqBal,5 have been constructed using these lower-upper
approximations.

Let <U , pg> be a g-approximation space and P be any subset of U. P, ;, the g, 1-lower

g.1°
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—g,1
approximation of P and P’ , the g, 1-upper approximation of P, in the g-approximation
space <U , p° >, are defined by:

P

Len ™

{ueU:png}m{ueU:pg(u)gP}

and
;g,l :{ueU:PZr(u)mg(P)iw}u{uEU:pfmg(P);t@}‘

The following results are available in [44]. Without proofs they are presented below.
Proposition 20. P, and P* are dual approximations with respect to the quasi-

complementation —.

Proposition 21. P, | and P are respectively P, ﬁg(]_’g) and P* ug(l_’g )

Remark 16. For an arbitrary relation p®, it follows from Proposition 21 and Proposition
— —g —gl
12that P,, C P,and P"=P* cP*", forall PC U,
Proposition 22. If p® = pé;,(u), for all u € U in a g-approximation space <U , p? > then
P, =P, and P*' = P’ forall PC U.

In the following example we have shown how the three pairs <£p , P’ > , <1_3 o I_’g> and

e 2 l . . . . .
<}_)g,1, P > of a particular set look like when p is an equivalence relation, p # p® and p, #
Py Tor at least one u € U.

Example 17. U, g and p are the same as stated in Example 7. The possible situations
are presented in Table 5.
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Table S: Three lower-upper approximations of a particular set

Case (i) Case (ii) Case (iii) Case (iv)
P {az, 614} {al,ab aS} {al,a3a aS} {al,a3: aﬁ}
<P Fp> {a4}7 {a27 a3’ a4} {al,as}’ {a]7a5}7 {a6}7
—r {alv a27 a39 aS} {alv a27 a39 aS} {alv a27 a39 aSJ a6}
<P f,g> {az}a {azs as, ay} {an a,}, {al}, {alﬂa3, ag}
- {ala (,12, (13, (15} {ala (,12, (13, (15} {ala az: (13, (15, a6}
—g,1 a}, U
<I_’g,1, P 0, 0,U 0,U {as}
{ap a,, ds, dy, as}
Remark P, and P, have | P, and P, have | P, is a proper P, is a proper
no common a non-void subset of P subset of P
intersection intersection. p -

It has been stated earlier that for any relation p, P,; € P, and P’ =pP° c 1_3g’1 hold.

As there is no fixed subset inclusion relation between P, and P, until p = p¥, the four

circumstances that we have shown in Table 5 are the only possible cases when P, # P,. A

Pictorial representation of these four situations are shown in more general way in Figure 7.

Proposition 23. In a g-approximation space <U , p° >, the following results hold.

I U, =Uand 0% =0.

— —g,1
2. IfPCQC Uthen P,, C le and P¥' C 0",

3. Png’] =P, N Qg’] and PLQ

4 —(p

g,l) U P, forallP C U.

1 —_ —ag,1
“ =P C 0¥ forallP,0C U.

Proposition 24. If p® is reflexive in a g-approximation space <U , p¢ >, the following

results hold.

1 U =Uando,, =0

2 P, CPC P forallPCU.
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If p® is transitive, even an equivalence relation, then P 01 S (B . ) may not hold. The
. o

example given below is one such.

Example 18. U and g are the same as stated in Example 7. Let p = {(a,, a,), (a,, a,), (a3,

ay), (ay, ay), (as, as), (ae, ag), (@, ay), (a3, a))}. Then, p* = {(ay, a))(ay, ay), (a3, a3), (ay, ay),
(as, as), (ag, ag), (as, ag), (ag, a,)} 1s an equivalence relation on U. Let P = {a,, a,, a,}. Then,

Py = {a,, a,} but (Bg,l)g o=

Proposition 25. If p® is transitive and p5, = p%,, for all u € U in a g-approximation

81
=gl =g
space <U, pg> then for any subset P of U, P, C (P ) 1 and (Pg ) < P* hold.

\Bet),
Remark 17. The condition as stated in the above proposition is a sufficient condition but

not necessary. The following example establishes that for any subset P of U, C (Bg,l) 1

holds where p is transitive, even an equivalence relation, but p3, # p%,, for all u ETg’

Example 19. Let U = {a,, a,} and g : U — U be an involution defined by g(a,) = a,,
g(ay) =a,. Letp = {(a,, a,), (a,, a,)}. Then p* = {(a,, a,), (a,, a,)} is an equivalence relation
on U. Here, P, = (Bg’l)g,1’ for all subset P of U but pfl # pg( ) and pfz # p‘;’( x

aq a

Proposition 26. If p® is an equivalence relation and p5, = p%,, for u € Uin a
—g,l

g
g-approximation space <U, pg> then for any subset P of U, (J_Dg,l ) cP,,.

The condition as stated in the above proposition is only sufficient. The example given
g.1
below shows that for any subset P of U, (B g,l) C P, holds for an equivalence relation p*

where p§ = p%,, forallu € U.

g.1
Example 20. U, g and p are the same as stated in Example 19. Here, (1_’ 2l ) cP

—gl»
all subset P of U but p ;épg( ) and p ;tpg( :

aq a

for

Rough Set model for IqBal: Let <U , pg> be a g-approximation space. By Proposition
20 and Proposition 23, <2U, N, U, =, 1,0, U> is a IqBal where =P = g(P)’, P> Q =
P°UQandIP=P, .
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Rough Set model for IqBal,T: For any reflexive relation p® on U, by Proposition 20,
Proposition 23 and Proposition 24, {2V, N, U, =, —, 1, 0, U > is a IqBal,T.

Rough Set model for IqBal,4: For any reflexive and transitive relation p® with p$, =
Py for all u € U, by Proposition 20, Proposition 23, Proposition 24 and Proposition 25,
<2U, N, U, =, 1,0, U> is a IqBal 4 where /[P= P,, = P, = P, by Proposition 9.

Rough Set model for IqBal,5: For any equivalence relation p® on U with p$ = p%,,

forall u € U, by Proposition 20, Proposition 23, Proposition 24, Proposition 25 and Proposition

26; 2U9 n, U, =, 7, I, 0, U isal Bal,s where [P = B 1= £ and CP = Fg,lzﬁp_
q g P

Remark 18. <2U, N, U, =, 1,0, U > becomes a different model of IqBaO/IgBaT/
IqBa4/IqBa5 with respect to the implication =, where P =, Q=g(P = Q) forall P, Q C U.

In order to view the important results of this section at a glance we refer to Table 6.

Table 6: Some important results on the three lower-upper approximations

Nature of p Result
p is arbitrary relation

P, P° and P,,, P*'
approximations with respect to the quasi-
complementation.

p is arbitrary, p # p* and p, = p,,, for at (1) P, C P,

leastoneu € U

are always dual

@) P"=p* C p*",

P . .
(3) P, and P are not dual approximations
with respect to the quasi-complementation.

is reflexive/equivalence, p # p® and p, # P —¢.1
gg(u), for at leas?oneu € Up " " (1) B,y C P, CPC P = e P
(2) P, and P’ are not dual approximations
with respect to the quasi-complementation.
(3) P, C P but there is no fixed subset
inclusion relation between _ and Bg. See

Table 5 and Figure 7.
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p is reflexive and transitive, p, = p,, , for all | The case is not possible by Proposition 9.
u € Uand p # p
p is arbitrary but not reflexive and transitive, (1) P, =P,
Py = Py forallu € Uand p # p* e T

QP =p° =p"".
(3) P, and P are not dual approximations
with respect to the quasi-complementation.

p is arbitrary, p = p* and p, # p,,, for at () P,,C P,=P,
least one u € U

@ P =p* C P
(3) P, and P” are dual approximations with

respect to the quasi-complementation.

p is reflexive/equivalence, p = p® and p, #

cP,=P, CPCP =p°Cp®
Py fOr at least one u € U DL C L=E, CPCP =P C P

(2) P, and P’ are dual approximations with
respect to the quasi-complementation.

p is arbitrary, p = p® and p, = p,,, for all u (1) P, = P,= P,
evU —p  —g  —g1
QpP =p =pr

(3) P, and P’ are dual approximations with

respect to the quasi-complementation.

6. CONCLUDING REMARKS

We have discussed various abstract algebraic structures emerging out of various kinds of
rough sets starting from the Pawlakian one. But there has been a number of such algebras
all coming out of the basic one viz. topological quasi-Boolean algebra. From the angle of
application these abstract algebras need to have set-models. It has been possible to present
set-models to some (but not all) of these abstract structures. So this part of the study remains
incomplete.

Logics corresponding to these algebras have been studied extensively. However, logics
are of three kinds: first, those in which a formula is evaluated as an element of the algebra
belonging to a class, second where formulas are interpreted as subsets of a universe endowed
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U U
P
A
Case (i) Case (ii)
U U
ﬁfhl F_q,l
Case (iii) Case (iv)

Fig. 7: Different possibilities of three lower-upper approximations when p is reflexive/
equivalence, p # p® and p, # Py for atleast one u € U
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with topological operators on the subsets of it. In the second case, the topological operators
are interpretation of the modal operators, they represent the lower/upper approximations
of the sets. A third kind of logic also exists—logics with rough consequence, in which the
consequence relation has been generalized via generalization of Modus Ponens rule.

Lots of question remain unanswered. Of them a few important ones are the following.

1.

In Table 2, there are covering systems whose corresponding logical systems have
yet not been obtained. Particularly significant will be those in which duality of the
lower upper approximation does not hold and those which are non-normal in the
sense that the axiom K does not hold in them. But they are rough set models in
the sense that approximation operators are available in them defined in terms of
covering of the universe of discourse.

In Section 5, a few rough set models have been constructed from the point of
relational approach. A new approximation space has been defined in order to
obtain lower-upper approximations to be dual with respect to quasi-
complementation. A collection of relations {p : p = p®} has been identified so that
Pawlakian lower-upper approximations in these approximation spaces <U , p> are

dual with respect to the complementation as well as quasi-complementation. In
other words, we obtain a Boolean based and, at the same time, a quasi-Boolean
based algebra. This observation may open up a study in the field of rough set
theory. Besides, another investigation may be made on covering cases. Various
lower-upper approximations based on covering are available in many literature.
Some of them are dual with respect to set-complementation whereas others are
not so. An attempt may be taken in favour of capturing the notion of duality with
respect to quasi-complementation in these lower-upper approximations. This may
lead us to construct rough set model of remaining algebras discussed in Section 2.
Moreover, it may give a new direction of research regarding complementation and
quasi-complementation in covering based rough set theory. However, the second
author of this paper has taken an initiative [56] in this direction.

Another interesting as well as important issue is raised below. In all set-models
approximation operators are defined in terms of granules of the universe. The
basic philosophy of rough set study is that the universe of discourse is granulated,
elements or objects within the same granule are indiscernible. Granules are in
a sense the atoms of the universe. Now the question is, what should the basic
properties of the granules?
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A few attempts in this direction have been made so far [15,3]. An incomplete study in
this respect was presented in International Joint Conference on Rough Sets, 3-7 July 2017
Olsztyn, Poland. We present below some snapshots from that lecture to the consideration of
the readers.

What is done with these granules?

— Ultimately approximating a subset of the universe in terms of subsets formed out
of the granules.

—  Presented philosophically, a concept is thus understood/described in terms of two
better understood concepts. For example, the definable sets in the Pawlakian case.

—  The rudimentary or atomic concepts are represented (extensionally) by the
granules.

— A demonstrable concept is one whose extension has the same lower and upper
approximations. These may be considered as the most understood concepts i.e.
without any ambiguity—expectedly G =G for any granule G.

—  The next purpose is to understand complex concepts like P & O, P or O, non-P
etc. by approximations again.

From the angle of application granules are tangible and useful clusters of points.
Research in rough sets leads us to the need for developing a proper theory of granulation
so as to be able to address the fundamental issues of axiomatizing as well as capturing the
requirements of application satisfactorily.
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